Metamath Proof Explorer


Theorem knoppndvlem17

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 12-Aug-2021)

Ref Expression
Hypotheses knoppndvlem17.t T = x x + 1 2 x
knoppndvlem17.f F = y n 0 C n T 2 N n y
knoppndvlem17.w W = w i 0 F w i
knoppndvlem17.a A = 2 N J 2 M
knoppndvlem17.b B = 2 N J 2 M + 1
knoppndvlem17.c φ C 1 1
knoppndvlem17.j φ J 0
knoppndvlem17.m φ M
knoppndvlem17.n φ N
knoppndvlem17.1 φ 1 < N C
Assertion knoppndvlem17 φ 2 N C J 1 1 2 N C 1 W B W A B A

Proof

Step Hyp Ref Expression
1 knoppndvlem17.t T = x x + 1 2 x
2 knoppndvlem17.f F = y n 0 C n T 2 N n y
3 knoppndvlem17.w W = w i 0 F w i
4 knoppndvlem17.a A = 2 N J 2 M
5 knoppndvlem17.b B = 2 N J 2 M + 1
6 knoppndvlem17.c φ C 1 1
7 knoppndvlem17.j φ J 0
8 knoppndvlem17.m φ M
9 knoppndvlem17.n φ N
10 knoppndvlem17.1 φ 1 < N C
11 6 knoppndvlem3 φ C C < 1
12 11 simpld φ C
13 12 recnd φ C
14 13 abscld φ C
15 14 7 reexpcld φ C J
16 2re 2
17 16 a1i φ 2
18 2ne0 2 0
19 18 a1i φ 2 0
20 15 17 19 redivcld φ C J 2
21 20 recnd φ C J 2
22 1red φ 1
23 9 nnred φ N
24 17 23 remulcld φ 2 N
25 24 14 remulcld φ 2 N C
26 25 22 resubcld φ 2 N C 1
27 0red φ 0
28 0lt1 0 < 1
29 28 a1i φ 0 < 1
30 6 9 10 knoppndvlem12 φ 2 N C 1 1 < 2 N C 1
31 30 simprd φ 1 < 2 N C 1
32 27 22 26 29 31 lttrd φ 0 < 2 N C 1
33 26 32 jca φ 2 N C 1 0 < 2 N C 1
34 gt0ne0 2 N C 1 0 < 2 N C 1 2 N C 1 0
35 33 34 syl φ 2 N C 1 0
36 22 26 35 redivcld φ 1 2 N C 1
37 22 36 resubcld φ 1 1 2 N C 1
38 37 recnd φ 1 1 2 N C 1
39 21 38 mulcomd φ C J 2 1 1 2 N C 1 = 1 1 2 N C 1 C J 2
40 39 oveq1d φ C J 2 1 1 2 N C 1 2 N J 2 = 1 1 2 N C 1 C J 2 2 N J 2
41 2rp 2 +
42 41 a1i φ 2 +
43 9 nnrpd φ N +
44 42 43 rpmulcld φ 2 N +
45 7 nn0zd φ J
46 45 znegcld φ J
47 44 46 rpexpcld φ 2 N J +
48 47 rphalfcld φ 2 N J 2 +
49 48 rpcnd φ 2 N J 2
50 48 rpne0d φ 2 N J 2 0
51 38 21 49 50 divassd φ 1 1 2 N C 1 C J 2 2 N J 2 = 1 1 2 N C 1 C J 2 2 N J 2
52 21 49 50 divcld φ C J 2 2 N J 2
53 38 52 mulcomd φ 1 1 2 N C 1 C J 2 2 N J 2 = C J 2 2 N J 2 1 1 2 N C 1
54 15 recnd φ C J
55 47 rpcnd φ 2 N J
56 17 recnd φ 2
57 47 rpne0d φ 2 N J 0
58 54 55 56 57 19 divcan7d φ C J 2 2 N J 2 = C J 2 N J
59 24 recnd φ 2 N
60 44 rpne0d φ 2 N 0
61 59 60 45 expnegd φ 2 N J = 1 2 N J
62 61 oveq2d φ C J 2 N J = C J 1 2 N J
63 1cnd φ 1
64 59 7 expcld φ 2 N J
65 27 29 gtned φ 1 0
66 59 60 45 expne0d φ 2 N J 0
67 54 63 64 65 66 divdiv2d φ C J 1 2 N J = C J 2 N J 1
68 54 64 mulcld φ C J 2 N J
69 68 div1d φ C J 2 N J 1 = C J 2 N J
70 54 64 mulcomd φ C J 2 N J = 2 N J C J
71 59 60 jca φ 2 N 2 N 0
72 14 recnd φ C
73 6 9 10 knoppndvlem13 φ C 0
74 13 73 absne0d φ C 0
75 72 74 jca φ C C 0
76 71 75 45 3jca φ 2 N 2 N 0 C C 0 J
77 mulexpz 2 N 2 N 0 C C 0 J 2 N C J = 2 N J C J
78 76 77 syl φ 2 N C J = 2 N J C J
79 78 eqcomd φ 2 N J C J = 2 N C J
80 69 70 79 3eqtrd φ C J 2 N J 1 = 2 N C J
81 62 67 80 3eqtrd φ C J 2 N J = 2 N C J
82 58 81 eqtrd φ C J 2 2 N J 2 = 2 N C J
83 82 oveq1d φ C J 2 2 N J 2 1 1 2 N C 1 = 2 N C J 1 1 2 N C 1
84 53 83 eqtrd φ 1 1 2 N C 1 C J 2 2 N J 2 = 2 N C J 1 1 2 N C 1
85 40 51 84 3eqtrd φ C J 2 1 1 2 N C 1 2 N J 2 = 2 N C J 1 1 2 N C 1
86 85 eqcomd φ 2 N C J 1 1 2 N C 1 = C J 2 1 1 2 N C 1 2 N J 2
87 20 37 remulcld φ C J 2 1 1 2 N C 1
88 5 a1i φ B = 2 N J 2 M + 1
89 8 peano2zd φ M + 1
90 9 45 89 knoppndvlem1 φ 2 N J 2 M + 1
91 88 90 eqeltrd φ B
92 11 simprd φ C < 1
93 1 2 3 91 9 12 92 knoppcld φ W B
94 4 a1i φ A = 2 N J 2 M
95 9 45 8 knoppndvlem1 φ 2 N J 2 M
96 94 95 eqeltrd φ A
97 1 2 3 96 9 12 92 knoppcld φ W A
98 93 97 subcld φ W B W A
99 98 abscld φ W B W A
100 1 2 3 4 5 6 7 8 9 10 knoppndvlem15 φ C J 2 1 1 2 N C 1 W B W A
101 87 99 48 100 lediv1dd φ C J 2 1 1 2 N C 1 2 N J 2 W B W A 2 N J 2
102 86 101 eqbrtrd φ 2 N C J 1 1 2 N C 1 W B W A 2 N J 2
103 4 5 7 8 9 knoppndvlem16 φ B A = 2 N J 2
104 103 eqcomd φ 2 N J 2 = B A
105 104 oveq2d φ W B W A 2 N J 2 = W B W A B A
106 102 105 breqtrd φ 2 N C J 1 1 2 N C 1 W B W A B A