Metamath Proof Explorer


Theorem knoppndvlem21

Description: Lemma for knoppndv . (Contributed by Asger C. Ipsen, 18-Aug-2021)

Ref Expression
Hypotheses knoppndvlem21.t T=xx+12x
knoppndvlem21.f F=yn0CnT2 Nny
knoppndvlem21.w W=wi0Fwi
knoppndvlem21.g G=112 NC1
knoppndvlem21.c φC11
knoppndvlem21.d φD+
knoppndvlem21.e φE+
knoppndvlem21.h φH
knoppndvlem21.j φJ0
knoppndvlem21.n φN
knoppndvlem21.1 φ1<NC
knoppndvlem21.2 φ2 NJ2<D
knoppndvlem21.3 φE2 NCJG
Assertion knoppndvlem21 φabaHHbba<DabEWbWaba

Proof

Step Hyp Ref Expression
1 knoppndvlem21.t T=xx+12x
2 knoppndvlem21.f F=yn0CnT2 Nny
3 knoppndvlem21.w W=wi0Fwi
4 knoppndvlem21.g G=112 NC1
5 knoppndvlem21.c φC11
6 knoppndvlem21.d φD+
7 knoppndvlem21.e φE+
8 knoppndvlem21.h φH
9 knoppndvlem21.j φJ0
10 knoppndvlem21.n φN
11 knoppndvlem21.1 φ1<NC
12 knoppndvlem21.2 φ2 NJ2<D
13 knoppndvlem21.3 φE2 NCJG
14 eqid 2 NJ2m=2 NJ2m
15 eqid 2 NJ2m+1=2 NJ2m+1
16 14 15 9 8 10 knoppndvlem19 φm2 NJ2mHH2 NJ2m+1
17 2re 2
18 17 a1i φ2
19 10 nnred φN
20 18 19 remulcld φ2 N
21 2pos 0<2
22 21 a1i φ0<2
23 10 nngt0d φ0<N
24 18 19 22 23 mulgt0d φ0<2 N
25 24 gt0ne0d φ2 N0
26 9 nn0zd φJ
27 26 znegcld φJ
28 20 25 27 reexpclzd φ2 NJ
29 28 rehalfcld φ2 NJ2
30 29 adantr φm2 NJ2
31 simpr φmm
32 31 zred φmm
33 30 32 remulcld φm2 NJ2m
34 33 adantrr φm2 NJ2mHH2 NJ2m+12 NJ2m
35 peano2re mm+1
36 32 35 syl φmm+1
37 30 36 jca φm2 NJ2m+1
38 remulcl 2 NJ2m+12 NJ2m+1
39 37 38 syl φm2 NJ2m+1
40 39 adantrr φm2 NJ2mHH2 NJ2m+12 NJ2m+1
41 simprr φm2 NJ2mHH2 NJ2m+12 NJ2mHH2 NJ2m+1
42 9 adantr φmJ0
43 10 adantr φmN
44 14 15 42 31 43 knoppndvlem16 φm2 NJ2m+12 NJ2m=2 NJ2
45 12 adantr φm2 NJ2<D
46 44 45 eqbrtrd φm2 NJ2m+12 NJ2m<D
47 20 27 24 3jca φ2 NJ0<2 N
48 expgt0 2 NJ0<2 N0<2 NJ
49 47 48 syl φ0<2 NJ
50 28 18 49 22 divgt0d φ0<2 NJ2
51 50 adantr φm0<2 NJ2
52 44 eqcomd φm2 NJ2=2 NJ2m+12 NJ2m
53 51 52 breqtrd φm0<2 NJ2m+12 NJ2m
54 33 39 posdifd φm2 NJ2m<2 NJ2m+10<2 NJ2m+12 NJ2m
55 53 54 mpbird φm2 NJ2m<2 NJ2m+1
56 33 55 ltned φm2 NJ2m2 NJ2m+1
57 46 56 jca φm2 NJ2m+12 NJ2m<D2 NJ2m2 NJ2m+1
58 57 adantrr φm2 NJ2mHH2 NJ2m+12 NJ2m+12 NJ2m<D2 NJ2m2 NJ2m+1
59 7 rpred φE
60 59 adantr φmE
61 5 knoppndvlem3 φCC<1
62 61 simpld φC
63 62 recnd φC
64 63 abscld φC
65 20 64 remulcld φ2 NC
66 65 9 reexpcld φ2 NCJ
67 4 a1i φG=112 NC1
68 5 10 11 knoppndvlem20 φ112 NC1+
69 68 rpred φ112 NC1
70 67 69 eqeltrd φG
71 66 70 remulcld φ2 NCJG
72 71 adantr φm2 NCJG
73 62 adantr φmC
74 61 simprd φC<1
75 74 adantr φmC<1
76 1 2 3 39 43 73 75 knoppcld φmW2 NJ2m+1
77 1 2 3 33 43 73 75 knoppcld φmW2 NJ2m
78 76 77 subcld φmW2 NJ2m+1W2 NJ2m
79 78 abscld φmW2 NJ2m+1W2 NJ2m
80 44 30 eqeltrd φm2 NJ2m+12 NJ2m
81 53 gt0ne0d φm2 NJ2m+12 NJ2m0
82 79 80 81 redivcld φmW2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
83 13 adantr φmE2 NCJG
84 4 oveq2i 2 NCJG=2 NCJ112 NC1
85 84 a1i φm2 NCJG=2 NCJ112 NC1
86 5 adantr φmC11
87 11 adantr φm1<NC
88 1 2 3 14 15 86 42 31 43 87 knoppndvlem17 φm2 NCJ112 NC1W2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
89 85 88 eqbrtrd φm2 NCJGW2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
90 60 72 82 83 89 letrd φmEW2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
91 90 adantrr φm2 NJ2mHH2 NJ2m+1EW2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
92 41 58 91 3jca φm2 NJ2mHH2 NJ2m+12 NJ2mHH2 NJ2m+12 NJ2m+12 NJ2m<D2 NJ2m2 NJ2m+1EW2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
93 34 40 92 3jca φm2 NJ2mHH2 NJ2m+12 NJ2m2 NJ2m+12 NJ2mHH2 NJ2m+12 NJ2m+12 NJ2m<D2 NJ2m2 NJ2m+1EW2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
94 breq1 a=2 NJ2maH2 NJ2mH
95 94 anbi1d a=2 NJ2maHHb2 NJ2mHHb
96 oveq2 a=2 NJ2mba=b2 NJ2m
97 96 breq1d a=2 NJ2mba<Db2 NJ2m<D
98 neeq1 a=2 NJ2mab2 NJ2mb
99 97 98 anbi12d a=2 NJ2mba<Dabb2 NJ2m<D2 NJ2mb
100 fveq2 a=2 NJ2mWa=W2 NJ2m
101 100 oveq2d a=2 NJ2mWbWa=WbW2 NJ2m
102 101 fveq2d a=2 NJ2mWbWa=WbW2 NJ2m
103 102 96 oveq12d a=2 NJ2mWbWaba=WbW2 NJ2mb2 NJ2m
104 103 breq2d a=2 NJ2mEWbWabaEWbW2 NJ2mb2 NJ2m
105 95 99 104 3anbi123d a=2 NJ2maHHbba<DabEWbWaba2 NJ2mHHbb2 NJ2m<D2 NJ2mbEWbW2 NJ2mb2 NJ2m
106 breq2 b=2 NJ2m+1HbH2 NJ2m+1
107 106 anbi2d b=2 NJ2m+12 NJ2mHHb2 NJ2mHH2 NJ2m+1
108 oveq1 b=2 NJ2m+1b2 NJ2m=2 NJ2m+12 NJ2m
109 108 breq1d b=2 NJ2m+1b2 NJ2m<D2 NJ2m+12 NJ2m<D
110 neeq2 b=2 NJ2m+12 NJ2mb2 NJ2m2 NJ2m+1
111 109 110 anbi12d b=2 NJ2m+1b2 NJ2m<D2 NJ2mb2 NJ2m+12 NJ2m<D2 NJ2m2 NJ2m+1
112 fveq2 b=2 NJ2m+1Wb=W2 NJ2m+1
113 112 fvoveq1d b=2 NJ2m+1WbW2 NJ2m=W2 NJ2m+1W2 NJ2m
114 113 108 oveq12d b=2 NJ2m+1WbW2 NJ2mb2 NJ2m=W2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
115 114 breq2d b=2 NJ2m+1EWbW2 NJ2mb2 NJ2mEW2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
116 107 111 115 3anbi123d b=2 NJ2m+12 NJ2mHHbb2 NJ2m<D2 NJ2mbEWbW2 NJ2mb2 NJ2m2 NJ2mHH2 NJ2m+12 NJ2m+12 NJ2m<D2 NJ2m2 NJ2m+1EW2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2m
117 105 116 rspc2ev 2 NJ2m2 NJ2m+12 NJ2mHH2 NJ2m+12 NJ2m+12 NJ2m<D2 NJ2m2 NJ2m+1EW2 NJ2m+1W2 NJ2m2 NJ2m+12 NJ2mabaHHbba<DabEWbWaba
118 93 117 syl φm2 NJ2mHH2 NJ2m+1abaHHbba<DabEWbWaba
119 16 118 rexlimddv φabaHHbba<DabEWbWaba