| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lbsext.v |
|
| 2 |
|
lbsext.j |
|
| 3 |
|
lbsext.n |
|
| 4 |
|
lbsext.w |
|
| 5 |
|
lbsext.c |
|
| 6 |
|
lbsext.x |
|
| 7 |
|
lbsext.s |
|
| 8 |
|
lbsext.k |
|
| 9 |
7
|
ssrab3 |
|
| 10 |
|
ssnum |
|
| 11 |
8 9 10
|
sylancl |
|
| 12 |
1 2 3 4 5 6 7
|
lbsextlem1 |
|
| 13 |
4
|
adantr |
|
| 14 |
5
|
adantr |
|
| 15 |
6
|
adantr |
|
| 16 |
|
eqid |
|
| 17 |
|
simpr1 |
|
| 18 |
|
simpr2 |
|
| 19 |
|
simpr3 |
|
| 20 |
|
eqid |
|
| 21 |
1 2 3 13 14 15 7 16 17 18 19 20
|
lbsextlem3 |
|
| 22 |
21
|
ex |
|
| 23 |
22
|
alrimiv |
|
| 24 |
|
zornn0g |
|
| 25 |
11 12 23 24
|
syl3anc |
|
| 26 |
|
simprl |
|
| 27 |
|
sseq2 |
|
| 28 |
|
difeq1 |
|
| 29 |
28
|
fveq2d |
|
| 30 |
29
|
eleq2d |
|
| 31 |
30
|
notbid |
|
| 32 |
31
|
raleqbi1dv |
|
| 33 |
27 32
|
anbi12d |
|
| 34 |
33 7
|
elrab2 |
|
| 35 |
26 34
|
sylib |
|
| 36 |
35
|
simpld |
|
| 37 |
36
|
elpwid |
|
| 38 |
|
lveclmod |
|
| 39 |
4 38
|
syl |
|
| 40 |
39
|
adantr |
|
| 41 |
1 3
|
lspssv |
|
| 42 |
40 37 41
|
syl2anc |
|
| 43 |
|
ssun1 |
|
| 44 |
43
|
a1i |
|
| 45 |
|
ssun2 |
|
| 46 |
|
vsnid |
|
| 47 |
45 46
|
sselii |
|
| 48 |
1 3
|
lspssid |
|
| 49 |
40 37 48
|
syl2anc |
|
| 50 |
49
|
adantr |
|
| 51 |
|
eldifn |
|
| 52 |
51
|
adantl |
|
| 53 |
50 52
|
ssneldd |
|
| 54 |
|
nelne1 |
|
| 55 |
47 53 54
|
sylancr |
|
| 56 |
55
|
necomd |
|
| 57 |
|
df-pss |
|
| 58 |
44 56 57
|
sylanbrc |
|
| 59 |
|
psseq2 |
|
| 60 |
59
|
notbid |
|
| 61 |
|
simplrr |
|
| 62 |
37
|
adantr |
|
| 63 |
|
eldifi |
|
| 64 |
63
|
adantl |
|
| 65 |
64
|
snssd |
|
| 66 |
62 65
|
unssd |
|
| 67 |
1
|
fvexi |
|
| 68 |
67
|
elpw2 |
|
| 69 |
66 68
|
sylibr |
|
| 70 |
35
|
simprd |
|
| 71 |
70
|
simpld |
|
| 72 |
71
|
adantr |
|
| 73 |
72 43
|
sstrdi |
|
| 74 |
4
|
ad2antrr |
|
| 75 |
37
|
adantr |
|
| 76 |
75
|
ssdifssd |
|
| 77 |
64
|
adantrr |
|
| 78 |
|
simprrr |
|
| 79 |
|
difundir |
|
| 80 |
|
simprrl |
|
| 81 |
53
|
adantrr |
|
| 82 |
|
nelne2 |
|
| 83 |
80 81 82
|
syl2anc |
|
| 84 |
|
nelsn |
|
| 85 |
83 84
|
syl |
|
| 86 |
|
disjsn |
|
| 87 |
85 86
|
sylibr |
|
| 88 |
|
disj3 |
|
| 89 |
87 88
|
sylib |
|
| 90 |
89
|
uneq2d |
|
| 91 |
79 90
|
eqtr4id |
|
| 92 |
91
|
fveq2d |
|
| 93 |
78 92
|
eleqtrd |
|
| 94 |
70
|
simprd |
|
| 95 |
94
|
adantr |
|
| 96 |
|
rsp |
|
| 97 |
95 80 96
|
sylc |
|
| 98 |
93 97
|
eldifd |
|
| 99 |
1 16 3
|
lspsolv |
|
| 100 |
74 76 77 98 99
|
syl13anc |
|
| 101 |
|
undif1 |
|
| 102 |
80
|
snssd |
|
| 103 |
|
ssequn2 |
|
| 104 |
102 103
|
sylib |
|
| 105 |
101 104
|
eqtrid |
|
| 106 |
105
|
fveq2d |
|
| 107 |
100 106
|
eleqtrd |
|
| 108 |
107
|
expr |
|
| 109 |
52 108
|
mtod |
|
| 110 |
|
imnan |
|
| 111 |
109 110
|
sylibr |
|
| 112 |
111
|
ralrimiv |
|
| 113 |
|
difssd |
|
| 114 |
1 3
|
lspss |
|
| 115 |
40 37 113 114
|
syl3anc |
|
| 116 |
115
|
adantr |
|
| 117 |
116 52
|
ssneldd |
|
| 118 |
|
vex |
|
| 119 |
|
id |
|
| 120 |
|
sneq |
|
| 121 |
120
|
difeq2d |
|
| 122 |
|
difun2 |
|
| 123 |
121 122
|
eqtrdi |
|
| 124 |
123
|
fveq2d |
|
| 125 |
119 124
|
eleq12d |
|
| 126 |
125
|
notbid |
|
| 127 |
118 126
|
ralsn |
|
| 128 |
117 127
|
sylibr |
|
| 129 |
|
ralun |
|
| 130 |
112 128 129
|
syl2anc |
|
| 131 |
73 130
|
jca |
|
| 132 |
|
sseq2 |
|
| 133 |
|
difeq1 |
|
| 134 |
133
|
fveq2d |
|
| 135 |
134
|
eleq2d |
|
| 136 |
135
|
notbid |
|
| 137 |
136
|
raleqbi1dv |
|
| 138 |
132 137
|
anbi12d |
|
| 139 |
138 7
|
elrab2 |
|
| 140 |
69 131 139
|
sylanbrc |
|
| 141 |
60 61 140
|
rspcdva |
|
| 142 |
58 141
|
pm2.65da |
|
| 143 |
142
|
eq0rdv |
|
| 144 |
|
ssdif0 |
|
| 145 |
143 144
|
sylibr |
|
| 146 |
42 145
|
eqssd |
|
| 147 |
4
|
adantr |
|
| 148 |
1 2 3
|
islbs2 |
|
| 149 |
147 148
|
syl |
|
| 150 |
37 146 94 149
|
mpbir3and |
|
| 151 |
25 150 71
|
reximssdv |
|