Metamath Proof Explorer


Theorem lgsqrlem1

Description: Lemma for lgsqr . (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses lgsqr.y Y=/P
lgsqr.s S=Poly1Y
lgsqr.b B=BaseS
lgsqr.d D=deg1Y
lgsqr.o O=eval1Y
lgsqr.e ×˙=mulGrpS
lgsqr.x X=var1Y
lgsqr.m -˙=-S
lgsqr.u 1˙=1S
lgsqr.t T=P12×˙X-˙1˙
lgsqr.l L=ℤRHomY
lgsqr.1 φP2
lgsqrlem1.3 φA
lgsqrlem1.4 φAP12modP=1modP
Assertion lgsqrlem1 φOTLA=0Y

Proof

Step Hyp Ref Expression
1 lgsqr.y Y=/P
2 lgsqr.s S=Poly1Y
3 lgsqr.b B=BaseS
4 lgsqr.d D=deg1Y
5 lgsqr.o O=eval1Y
6 lgsqr.e ×˙=mulGrpS
7 lgsqr.x X=var1Y
8 lgsqr.m -˙=-S
9 lgsqr.u 1˙=1S
10 lgsqr.t T=P12×˙X-˙1˙
11 lgsqr.l L=ℤRHomY
12 lgsqr.1 φP2
13 lgsqrlem1.3 φA
14 lgsqrlem1.4 φAP12modP=1modP
15 10 fveq2i OT=OP12×˙X-˙1˙
16 15 fveq1i OTLA=OP12×˙X-˙1˙LA
17 eqid BaseY=BaseY
18 12 eldifad φP
19 1 znfld PYField
20 18 19 syl φYField
21 fldidom YFieldYIDomn
22 20 21 syl φYIDomn
23 isidom YIDomnYCRingYDomn
24 23 simplbi YIDomnYCRing
25 22 24 syl φYCRing
26 crngring YCRingYRing
27 25 26 syl φYRing
28 11 zrhrhm YRingLringRingHomY
29 27 28 syl φLringRingHomY
30 zringbas =Basering
31 30 17 rhmf LringRingHomYL:BaseY
32 29 31 syl φL:BaseY
33 32 13 ffvelcdmd φLABaseY
34 5 7 17 2 3 25 33 evl1vard φXBOXLA=LA
35 eqid mulGrpY=mulGrpY
36 oddprm P2P12
37 12 36 syl φP12
38 37 nnnn0d φP120
39 5 2 17 3 25 33 34 6 35 38 evl1expd φP12×˙XBOP12×˙XLA=P12mulGrpYLA
40 zringmpg mulGrpfld𝑠=mulGrpring
41 eqid mulGrpY=mulGrpY
42 40 41 rhmmhm LringRingHomYLmulGrpfld𝑠MndHommulGrpY
43 29 42 syl φLmulGrpfld𝑠MndHommulGrpY
44 40 30 mgpbas =BasemulGrpfld𝑠
45 eqid mulGrpfld𝑠=mulGrpfld𝑠
46 44 45 35 mhmmulg LmulGrpfld𝑠MndHommulGrpYP120ALP12mulGrpfld𝑠A=P12mulGrpYLA
47 43 38 13 46 syl3anc φLP12mulGrpfld𝑠A=P12mulGrpYLA
48 zsubrg SubRingfld
49 eqid mulGrpfld=mulGrpfld
50 49 subrgsubm SubRingfldSubMndmulGrpfld
51 48 50 mp1i φSubMndmulGrpfld
52 eqid mulGrpfld=mulGrpfld
53 eqid mulGrpfld𝑠=mulGrpfld𝑠
54 52 53 45 submmulg SubMndmulGrpfldP120AP12mulGrpfldA=P12mulGrpfld𝑠A
55 51 38 13 54 syl3anc φP12mulGrpfldA=P12mulGrpfld𝑠A
56 13 zcnd φA
57 cnfldexp AP120P12mulGrpfldA=AP12
58 56 38 57 syl2anc φP12mulGrpfldA=AP12
59 55 58 eqtr3d φP12mulGrpfld𝑠A=AP12
60 59 fveq2d φLP12mulGrpfld𝑠A=LAP12
61 prmnn PP
62 18 61 syl φP
63 zexpcl AP120AP12
64 13 38 63 syl2anc φAP12
65 1zzd φ1
66 moddvds PAP121AP12modP=1modPPAP121
67 62 64 65 66 syl3anc φAP12modP=1modPPAP121
68 14 67 mpbid φPAP121
69 62 nnnn0d φP0
70 1 11 zndvds P0AP121LAP12=L1PAP121
71 69 64 65 70 syl3anc φLAP12=L1PAP121
72 68 71 mpbird φLAP12=L1
73 zring1 1=1ring
74 eqid 1Y=1Y
75 73 74 rhm1 LringRingHomYL1=1Y
76 29 75 syl φL1=1Y
77 60 72 76 3eqtrd φLP12mulGrpfld𝑠A=1Y
78 47 77 eqtr3d φP12mulGrpYLA=1Y
79 78 eqeq2d φOP12×˙XLA=P12mulGrpYLAOP12×˙XLA=1Y
80 79 anbi2d φP12×˙XBOP12×˙XLA=P12mulGrpYLAP12×˙XBOP12×˙XLA=1Y
81 39 80 mpbid φP12×˙XBOP12×˙XLA=1Y
82 eqid algScS=algScS
83 17 74 ringidcl YRing1YBaseY
84 27 83 syl φ1YBaseY
85 5 2 17 82 3 25 84 33 evl1scad φalgScS1YBOalgScS1YLA=1Y
86 2 82 74 9 ply1scl1 YRingalgScS1Y=1˙
87 27 86 syl φalgScS1Y=1˙
88 87 eleq1d φalgScS1YB1˙B
89 87 fveq2d φOalgScS1Y=O1˙
90 89 fveq1d φOalgScS1YLA=O1˙LA
91 90 eqeq1d φOalgScS1YLA=1YO1˙LA=1Y
92 88 91 anbi12d φalgScS1YBOalgScS1YLA=1Y1˙BO1˙LA=1Y
93 85 92 mpbid φ1˙BO1˙LA=1Y
94 eqid -Y=-Y
95 5 2 17 3 25 33 81 93 8 94 evl1subd φP12×˙X-˙1˙BOP12×˙X-˙1˙LA=1Y-Y1Y
96 95 simprd φOP12×˙X-˙1˙LA=1Y-Y1Y
97 16 96 eqtrid φOTLA=1Y-Y1Y
98 ringgrp YRingYGrp
99 27 98 syl φYGrp
100 eqid 0Y=0Y
101 17 100 94 grpsubid YGrp1YBaseY1Y-Y1Y=0Y
102 99 84 101 syl2anc φ1Y-Y1Y=0Y
103 97 102 eqtrd φOTLA=0Y