Metamath Proof Explorer


Theorem lindslinindsimp1

Description: Implication 1 for lindslininds . (Contributed by AV, 25-Apr-2019) (Revised by AV, 30-Jul-2019) (Proof shortened by II, 16-Feb-2023)

Ref Expression
Hypotheses lindslinind.r R=ScalarM
lindslinind.b B=BaseR
lindslinind.0 0˙=0R
lindslinind.z Z=0M
Assertion lindslinindsimp1 SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙SBaseMsSyB0˙¬yMsLSpanMSs

Proof

Step Hyp Ref Expression
1 lindslinind.r R=ScalarM
2 lindslinind.b B=BaseR
3 lindslinind.0 0˙=0R
4 lindslinind.z Z=0M
5 elpwi S𝒫BaseMSBaseM
6 5 ad2antrl SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙SBaseM
7 simpr SVMLModMLMod
8 7 anim2i S𝒫BaseMSVMLModS𝒫BaseMMLMod
9 8 ancomd S𝒫BaseMSVMLModMLModS𝒫BaseM
10 9 ad2antrr S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsMLModS𝒫BaseM
11 eldifi yB0˙yB
12 11 adantl sSyB0˙yB
13 12 adantl S𝒫BaseMSVMLModsSyB0˙yB
14 13 adantr S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsyB
15 simprl S𝒫BaseMSVMLModsSyB0˙sS
16 15 adantr S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSssS
17 simprl S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsgBSs
18 14 16 17 3jca S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsyBsSgBSs
19 simprrl S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsfinSupp0˙g
20 eqid BaseM=BaseM
21 eqid invgR=invgR
22 eqid zSifz=sinvgRygz=zSifz=sinvgRygz
23 20 1 2 3 4 21 22 lincext2 MLModS𝒫BaseMyBsSgBSsfinSupp0˙gfinSupp0˙zSifz=sinvgRygz
24 10 18 19 23 syl3anc S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsfinSupp0˙zSifz=sinvgRygz
25 8 adantr S𝒫BaseMSVMLModsSyB0˙S𝒫BaseMMLMod
26 25 ancomd S𝒫BaseMSVMLModsSyB0˙MLModS𝒫BaseM
27 26 adantr S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsMLModS𝒫BaseM
28 20 1 2 3 4 21 22 lincext1 MLModS𝒫BaseMyBsSgBSszSifz=sinvgRygzBS
29 27 18 28 syl2anc S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSszSifz=sinvgRygzBS
30 breq1 f=zSifz=sinvgRygzfinSupp0˙ffinSupp0˙zSifz=sinvgRygz
31 oveq1 f=zSifz=sinvgRygzflinCMS=zSifz=sinvgRygzlinCMS
32 31 eqeq1d f=zSifz=sinvgRygzflinCMS=ZzSifz=sinvgRygzlinCMS=Z
33 30 32 anbi12d f=zSifz=sinvgRygzfinSupp0˙fflinCMS=ZfinSupp0˙zSifz=sinvgRygzzSifz=sinvgRygzlinCMS=Z
34 fveq1 f=zSifz=sinvgRygzfx=zSifz=sinvgRygzx
35 34 eqeq1d f=zSifz=sinvgRygzfx=0˙zSifz=sinvgRygzx=0˙
36 35 ralbidv f=zSifz=sinvgRygzxSfx=0˙xSzSifz=sinvgRygzx=0˙
37 33 36 imbi12d f=zSifz=sinvgRygzfinSupp0˙fflinCMS=ZxSfx=0˙finSupp0˙zSifz=sinvgRygzzSifz=sinvgRygzlinCMS=ZxSzSifz=sinvgRygzx=0˙
38 37 rspcv zSifz=sinvgRygzBSfBSfinSupp0˙fflinCMS=ZxSfx=0˙finSupp0˙zSifz=sinvgRygzzSifz=sinvgRygzlinCMS=ZxSzSifz=sinvgRygzx=0˙
39 29 38 syl S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsfBSfinSupp0˙fflinCMS=ZxSfx=0˙finSupp0˙zSifz=sinvgRygzzSifz=sinvgRygzlinCMS=ZxSzSifz=sinvgRygzx=0˙
40 39 exp4a S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsfBSfinSupp0˙fflinCMS=ZxSfx=0˙finSupp0˙zSifz=sinvgRygzzSifz=sinvgRygzlinCMS=ZxSzSifz=sinvgRygzx=0˙
41 24 40 mpid S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsfBSfinSupp0˙fflinCMS=ZxSfx=0˙zSifz=sinvgRygzlinCMS=ZxSzSifz=sinvgRygzx=0˙
42 simprr S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsfinSupp0˙gyMs=glinCMSs
43 20 1 2 3 4 21 22 lincext3 MLModS𝒫BaseMyBsSgBSsfinSupp0˙gyMs=glinCMSszSifz=sinvgRygzlinCMS=Z
44 10 18 42 43 syl3anc S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSszSifz=sinvgRygzlinCMS=Z
45 fveqeq2 x=szSifz=sinvgRygzx=0˙zSifz=sinvgRygzs=0˙
46 45 rspcv sSxSzSifz=sinvgRygzx=0˙zSifz=sinvgRygzs=0˙
47 16 46 syl S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsxSzSifz=sinvgRygzx=0˙zSifz=sinvgRygzs=0˙
48 eqidd S𝒫BaseMSVMLModsSyB0˙zSifz=sinvgRygz=zSifz=sinvgRygz
49 iftrue z=sifz=sinvgRygz=invgRy
50 49 adantl S𝒫BaseMSVMLModsSyB0˙z=sifz=sinvgRygz=invgRy
51 fvexd S𝒫BaseMSVMLModsSyB0˙invgRyV
52 48 50 15 51 fvmptd S𝒫BaseMSVMLModsSyB0˙zSifz=sinvgRygzs=invgRy
53 52 adantr S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSszSifz=sinvgRygzs=invgRy
54 53 eqeq1d S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSszSifz=sinvgRygzs=0˙invgRy=0˙
55 1 lmodfgrp MLModRGrp
56 2 3 21 grpinvnzcl RGrpyB0˙invgRyB0˙
57 eldif invgRyB0˙invgRyB¬invgRy0˙
58 fvex invgRyV
59 58 elsn invgRy0˙invgRy=0˙
60 pm2.21 ¬invgRy=0˙invgRy=0˙SVsSS𝒫BaseM¬yMs=glinCMSs
61 60 com25 ¬invgRy=0˙S𝒫BaseMSVsSinvgRy=0˙¬yMs=glinCMSs
62 59 61 sylnbi ¬invgRy0˙S𝒫BaseMSVsSinvgRy=0˙¬yMs=glinCMSs
63 57 62 simplbiim invgRyB0˙S𝒫BaseMSVsSinvgRy=0˙¬yMs=glinCMSs
64 56 63 syl RGrpyB0˙S𝒫BaseMSVsSinvgRy=0˙¬yMs=glinCMSs
65 64 ex RGrpyB0˙S𝒫BaseMSVsSinvgRy=0˙¬yMs=glinCMSs
66 55 65 syl MLModyB0˙S𝒫BaseMSVsSinvgRy=0˙¬yMs=glinCMSs
67 66 com24 MLModSVS𝒫BaseMyB0˙sSinvgRy=0˙¬yMs=glinCMSs
68 67 impcom SVMLModS𝒫BaseMyB0˙sSinvgRy=0˙¬yMs=glinCMSs
69 68 impcom S𝒫BaseMSVMLModyB0˙sSinvgRy=0˙¬yMs=glinCMSs
70 69 com13 sSyB0˙S𝒫BaseMSVMLModinvgRy=0˙¬yMs=glinCMSs
71 70 imp sSyB0˙S𝒫BaseMSVMLModinvgRy=0˙¬yMs=glinCMSs
72 71 impcom S𝒫BaseMSVMLModsSyB0˙invgRy=0˙¬yMs=glinCMSs
73 72 adantr S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsinvgRy=0˙¬yMs=glinCMSs
74 54 73 sylbid S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSszSifz=sinvgRygzs=0˙¬yMs=glinCMSs
75 47 74 syld S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSsxSzSifz=sinvgRygzx=0˙¬yMs=glinCMSs
76 44 75 embantd S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSszSifz=sinvgRygzlinCMS=ZxSzSifz=sinvgRygzx=0˙¬yMs=glinCMSs
77 41 76 syldc fBSfinSupp0˙fflinCMS=ZxSfx=0˙S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSs¬yMs=glinCMSs
78 77 exp5j fBSfinSupp0˙fflinCMS=ZxSfx=0˙S𝒫BaseMSVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSs¬yMs=glinCMSs
79 78 impcom S𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙SVMLModsSyB0˙gBSsfinSupp0˙gyMs=glinCMSs¬yMs=glinCMSs
80 79 impcom SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSsfinSupp0˙gyMs=glinCMSs¬yMs=glinCMSs
81 80 imp SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSsfinSupp0˙gyMs=glinCMSs¬yMs=glinCMSs
82 81 expdimp SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSsfinSupp0˙gyMs=glinCMSs¬yMs=glinCMSs
83 82 expd SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSsfinSupp0˙gyMs=glinCMSs¬yMs=glinCMSs
84 83 impcom finSupp0˙gSVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSsyMs=glinCMSs¬yMs=glinCMSs
85 84 pm2.01d finSupp0˙gSVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSs¬yMs=glinCMSs
86 85 olcd finSupp0˙gSVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSs¬finSupp0˙g¬yMs=glinCMSs
87 animorl ¬finSupp0˙gSVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSs¬finSupp0˙g¬yMs=glinCMSs
88 86 87 pm2.61ian SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSs¬finSupp0˙g¬yMs=glinCMSs
89 88 ralrimiva SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙gBSs¬finSupp0˙g¬yMs=glinCMSs
90 ralnex gBSs¬finSupp0˙gyMs=glinCMSs¬gBSsfinSupp0˙gyMs=glinCMSs
91 ianor ¬finSupp0˙gyMs=glinCMSs¬finSupp0˙g¬yMs=glinCMSs
92 91 ralbii gBSs¬finSupp0˙gyMs=glinCMSsgBSs¬finSupp0˙g¬yMs=glinCMSs
93 90 92 bitr3i ¬gBSsfinSupp0˙gyMs=glinCMSsgBSs¬finSupp0˙g¬yMs=glinCMSs
94 89 93 sylibr SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙¬gBSsfinSupp0˙gyMs=glinCMSs
95 94 intnand SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙¬yMsBaseMgBSsfinSupp0˙gyMs=glinCMSs
96 7 ad2antrr SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙MLMod
97 difexg SVSsV
98 97 ad2antrr SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙SsV
99 5 ssdifssd S𝒫BaseMSsBaseM
100 99 ad2antrl SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙SsBaseM
101 98 100 elpwd SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙Ss𝒫BaseM
102 101 adantr SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙Ss𝒫BaseM
103 20 lspeqlco MLModSs𝒫BaseMMLinCoSs=LSpanMSs
104 103 eleq2d MLModSs𝒫BaseMyMsMLinCoSsyMsLSpanMSs
105 104 bicomd MLModSs𝒫BaseMyMsLSpanMSsyMsMLinCoSs
106 96 102 105 syl2anc SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙yMsLSpanMSsyMsMLinCoSs
107 7 adantr SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙MLMod
108 difexg S𝒫BaseMSsV
109 108 99 elpwd S𝒫BaseMSs𝒫BaseM
110 109 ad2antrl SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙Ss𝒫BaseM
111 107 110 jca SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙MLModSs𝒫BaseM
112 111 adantr SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙MLModSs𝒫BaseM
113 20 1 2 lcoval MLModSs𝒫BaseMyMsMLinCoSsyMsBaseMgBSsfinSupp0RgyMs=glinCMSs
114 3 eqcomi 0R=0˙
115 114 breq2i finSupp0RgfinSupp0˙g
116 115 anbi1i finSupp0RgyMs=glinCMSsfinSupp0˙gyMs=glinCMSs
117 116 rexbii gBSsfinSupp0RgyMs=glinCMSsgBSsfinSupp0˙gyMs=glinCMSs
118 117 anbi2i yMsBaseMgBSsfinSupp0RgyMs=glinCMSsyMsBaseMgBSsfinSupp0˙gyMs=glinCMSs
119 113 118 bitrdi MLModSs𝒫BaseMyMsMLinCoSsyMsBaseMgBSsfinSupp0˙gyMs=glinCMSs
120 112 119 syl SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙yMsMLinCoSsyMsBaseMgBSsfinSupp0˙gyMs=glinCMSs
121 106 120 bitrd SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙yMsLSpanMSsyMsBaseMgBSsfinSupp0˙gyMs=glinCMSs
122 95 121 mtbird SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙¬yMsLSpanMSs
123 122 ralrimivva SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙sSyB0˙¬yMsLSpanMSs
124 6 123 jca SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙SBaseMsSyB0˙¬yMsLSpanMSs
125 124 ex SVMLModS𝒫BaseMfBSfinSupp0˙fflinCMS=ZxSfx=0˙SBaseMsSyB0˙¬yMsLSpanMSs