Metamath Proof Explorer


Theorem logsqvma

Description: A formula for log ^ 2 ( N ) in terms of the primes. Equation 10.4.6 of Shapiro, p. 418. (Contributed by Mario Carneiro, 13-May-2016)

Ref Expression
Assertion logsqvma Ndx|xNux|xdΛuΛdu+Λdlogd=logN2

Proof

Step Hyp Ref Expression
1 fzfid N1NFin
2 dvdsssfz1 Nx|xN1N
3 1 2 ssfid Nx|xNFin
4 fzfid Ndx|xN1dFin
5 elrabi dx|xNd
6 5 adantl Ndx|xNd
7 dvdsssfz1 dx|xd1d
8 6 7 syl Ndx|xNx|xd1d
9 4 8 ssfid Ndx|xNx|xdFin
10 elrabi ux|xdu
11 10 ad2antll Ndx|xNux|xdu
12 vmacl uΛu
13 11 12 syl Ndx|xNux|xdΛu
14 breq1 x=uxdud
15 14 elrab ux|xduud
16 15 simprbi ux|xdud
17 16 ad2antll Ndx|xNux|xdud
18 5 ad2antrl Ndx|xNux|xdd
19 nndivdvds duuddu
20 18 11 19 syl2anc Ndx|xNux|xduddu
21 17 20 mpbid Ndx|xNux|xddu
22 vmacl duΛdu
23 21 22 syl Ndx|xNux|xdΛdu
24 13 23 remulcld Ndx|xNux|xdΛuΛdu
25 24 recnd Ndx|xNux|xdΛuΛdu
26 25 anassrs Ndx|xNux|xdΛuΛdu
27 9 26 fsumcl Ndx|xNux|xdΛuΛdu
28 vmacl dΛd
29 6 28 syl Ndx|xNΛd
30 6 nnrpd Ndx|xNd+
31 30 relogcld Ndx|xNlogd
32 29 31 remulcld Ndx|xNΛdlogd
33 32 recnd Ndx|xNΛdlogd
34 3 27 33 fsumadd Ndx|xNux|xdΛuΛdu+Λdlogd=dx|xNux|xdΛuΛdu+dx|xNΛdlogd
35 id NN
36 fvoveq1 d=ukΛdu=Λuku
37 36 oveq2d d=ukΛuΛdu=ΛuΛuku
38 35 37 25 fsumdvdscom Ndx|xNux|xdΛuΛdu=ux|xNkx|xNuΛuΛuku
39 ssrab2 x|xNu
40 simpr Nux|xNkx|xNukx|xNu
41 39 40 sselid Nux|xNkx|xNuk
42 41 nncnd Nux|xNkx|xNuk
43 ssrab2 x|xN
44 simpr Nux|xNux|xN
45 43 44 sselid Nux|xNu
46 45 nncnd Nux|xNu
47 46 adantr Nux|xNkx|xNuu
48 45 nnne0d Nux|xNu0
49 48 adantr Nux|xNkx|xNuu0
50 42 47 49 divcan3d Nux|xNkx|xNuuku=k
51 50 fveq2d Nux|xNkx|xNuΛuku=Λk
52 51 sumeq2dv Nux|xNkx|xNuΛuku=kx|xNuΛk
53 dvdsdivcl Nux|xNNux|xN
54 43 53 sselid Nux|xNNu
55 vmasum Nukx|xNuΛk=logNu
56 54 55 syl Nux|xNkx|xNuΛk=logNu
57 nnrp NN+
58 57 adantr Nux|xNN+
59 45 nnrpd Nux|xNu+
60 58 59 relogdivd Nux|xNlogNu=logNlogu
61 52 56 60 3eqtrd Nux|xNkx|xNuΛuku=logNlogu
62 61 oveq2d Nux|xNΛukx|xNuΛuku=ΛulogNlogu
63 fzfid Nux|xN1NuFin
64 dvdsssfz1 Nux|xNu1Nu
65 54 64 syl Nux|xNx|xNu1Nu
66 63 65 ssfid Nux|xNx|xNuFin
67 45 12 syl Nux|xNΛu
68 67 recnd Nux|xNΛu
69 vmacl kΛk
70 41 69 syl Nux|xNkx|xNuΛk
71 70 recnd Nux|xNkx|xNuΛk
72 51 71 eqeltrd Nux|xNkx|xNuΛuku
73 66 68 72 fsummulc2 Nux|xNΛukx|xNuΛuku=kx|xNuΛuΛuku
74 relogcl N+logN
75 74 recnd N+logN
76 58 75 syl Nux|xNlogN
77 59 relogcld Nux|xNlogu
78 77 recnd Nux|xNlogu
79 68 76 78 subdid Nux|xNΛulogNlogu=ΛulogNΛulogu
80 62 73 79 3eqtr3d Nux|xNkx|xNuΛuΛuku=ΛulogNΛulogu
81 80 sumeq2dv Nux|xNkx|xNuΛuΛuku=ux|xNΛulogNΛulogu
82 68 76 mulcld Nux|xNΛulogN
83 68 78 mulcld Nux|xNΛulogu
84 3 82 83 fsumsub Nux|xNΛulogNΛulogu=ux|xNΛulogNux|xNΛulogu
85 57 75 syl NlogN
86 85 sqvald NlogN2=logNlogN
87 vmasum Nux|xNΛu=logN
88 87 oveq1d Nux|xNΛulogN=logNlogN
89 3 85 68 fsummulc1 Nux|xNΛulogN=ux|xNΛulogN
90 86 88 89 3eqtr2rd Nux|xNΛulogN=logN2
91 fveq2 u=dΛu=Λd
92 fveq2 u=dlogu=logd
93 91 92 oveq12d u=dΛulogu=Λdlogd
94 93 cbvsumv ux|xNΛulogu=dx|xNΛdlogd
95 94 a1i Nux|xNΛulogu=dx|xNΛdlogd
96 90 95 oveq12d Nux|xNΛulogNux|xNΛulogu=logN2dx|xNΛdlogd
97 84 96 eqtrd Nux|xNΛulogNΛulogu=logN2dx|xNΛdlogd
98 38 81 97 3eqtrd Ndx|xNux|xdΛuΛdu=logN2dx|xNΛdlogd
99 98 oveq1d Ndx|xNux|xdΛuΛdu+dx|xNΛdlogd=logN2-dx|xNΛdlogd+dx|xNΛdlogd
100 85 sqcld NlogN2
101 3 33 fsumcl Ndx|xNΛdlogd
102 100 101 npcand NlogN2-dx|xNΛdlogd+dx|xNΛdlogd=logN2
103 34 99 102 3eqtrd Ndx|xNux|xdΛuΛdu+Λdlogd=logN2