Metamath Proof Explorer


Theorem mtestbdd

Description: Given the hypotheses of the Weierstrass M-test, the convergent function of the sequence is uniformly bounded. (Contributed by Mario Carneiro, 9-Jul-2017)

Ref Expression
Hypotheses mtest.z Z=N
mtest.n φN
mtest.s φSV
mtest.f φF:ZS
mtest.m φMW
mtest.c φkZMk
mtest.l φkZzSFkzMk
mtest.d φseqN+Mdom
mtest.t φseqNf+FuST
Assertion mtestbdd φxzSTzx

Proof

Step Hyp Ref Expression
1 mtest.z Z=N
2 mtest.n φN
3 mtest.s φSV
4 mtest.f φF:ZS
5 mtest.m φMW
6 mtest.c φkZMk
7 mtest.l φkZzSFkzMk
8 mtest.d φseqN+Mdom
9 mtest.t φseqNf+FuST
10 6 recnd φkZMk
11 1 2 10 serf φseqN+M:Z
12 11 ffvelcdmda φmZseqN+Mm
13 12 ralrimiva φmZseqN+Mm
14 1 climbdd NseqN+MdommZseqN+MmymZseqN+Mmy
15 2 8 13 14 syl3anc φymZseqN+Mmy
16 2 adantr φymZseqN+MmyN
17 seqfn NseqNf+FFnN
18 2 17 syl φseqNf+FFnN
19 1 fneq2i seqNf+FFnZseqNf+FFnN
20 18 19 sylibr φseqNf+FFnZ
21 ulmf2 seqNf+FFnZseqNf+FuSTseqNf+F:ZS
22 20 9 21 syl2anc φseqNf+F:ZS
23 22 adantr φymZseqN+MmyseqNf+F:ZS
24 simplrl φymZseqN+MmynZy
25 fveq2 x=zFjx=Fjz
26 25 mpteq2dv x=zjZFjx=jZFjz
27 26 seqeq3d x=zseqN+jZFjx=seqN+jZFjz
28 27 fveq1d x=zseqN+jZFjxn=seqN+jZFjzn
29 eqid xSseqN+jZFjxn=xSseqN+jZFjxn
30 fvex seqN+jZFjznV
31 28 29 30 fvmpt zSxSseqN+jZFjxnz=seqN+jZFjzn
32 31 adantl φymZseqN+MmynZzSxSseqN+jZFjxnz=seqN+jZFjzn
33 4 ad3antrrr φymZseqN+MmynZzSF:ZS
34 33 feqmptd φymZseqN+MmynZzSF=jZFj
35 33 ffvelcdmda φymZseqN+MmynZzSjZFjS
36 elmapi FjSFj:S
37 35 36 syl φymZseqN+MmynZzSjZFj:S
38 37 feqmptd φymZseqN+MmynZzSjZFj=xSFjx
39 38 mpteq2dva φymZseqN+MmynZzSjZFj=jZxSFjx
40 34 39 eqtrd φymZseqN+MmynZzSF=jZxSFjx
41 40 seqeq3d φymZseqN+MmynZzSseqNf+F=seqNf+jZxSFjx
42 41 fveq1d φymZseqN+MmynZzSseqNf+Fn=seqNf+jZxSFjxn
43 3 ad3antrrr φymZseqN+MmynZzSSV
44 simplr φymZseqN+MmynZzSnZ
45 44 1 eleqtrdi φymZseqN+MmynZzSnN
46 elfzuz kNnkN
47 46 1 eleqtrrdi kNnkZ
48 47 ssriv NnZ
49 48 a1i φymZseqN+MmynZzSNnZ
50 37 ffvelcdmda φymZseqN+MmynZzSjZxSFjx
51 50 anasss φymZseqN+MmynZzSjZxSFjx
52 43 45 49 51 seqof2 φymZseqN+MmynZzSseqNf+jZxSFjxn=xSseqN+jZFjxn
53 42 52 eqtrd φymZseqN+MmynZzSseqNf+Fn=xSseqN+jZFjxn
54 53 fveq1d φymZseqN+MmynZzSseqNf+Fnz=xSseqN+jZFjxnz
55 47 adantl φymZseqN+MmynZzSkNnkZ
56 fveq2 j=kFj=Fk
57 56 fveq1d j=kFjz=Fkz
58 eqid jZFjz=jZFjz
59 fvex FkzV
60 57 58 59 fvmpt kZjZFjzk=Fkz
61 55 60 syl φymZseqN+MmynZzSkNnjZFjzk=Fkz
62 simplr φymZseqN+MmynZzSjZzS
63 37 62 ffvelcdmd φymZseqN+MmynZzSjZFjz
64 63 fmpttd φymZseqN+MmynZzSjZFjz:Z
65 64 ffvelcdmda φymZseqN+MmynZzSkZjZFjzk
66 47 65 sylan2 φymZseqN+MmynZzSkNnjZFjzk
67 61 66 eqeltrrd φymZseqN+MmynZzSkNnFkz
68 61 45 67 fsumser φymZseqN+MmynZzSk=NnFkz=seqN+jZFjzn
69 32 54 68 3eqtr4d φymZseqN+MmynZzSseqNf+Fnz=k=NnFkz
70 69 fveq2d φymZseqN+MmynZzSseqNf+Fnz=k=NnFkz
71 fzfid φymZseqN+MmynZzSNnFin
72 71 67 fsumcl φymZseqN+MmynZzSk=NnFkz
73 72 abscld φymZseqN+MmynZzSk=NnFkz
74 67 abscld φymZseqN+MmynZzSkNnFkz
75 71 74 fsumrecl φymZseqN+MmynZzSk=NnFkz
76 24 adantr φymZseqN+MmynZzSy
77 71 67 fsumabs φymZseqN+MmynZzSk=NnFkzk=NnFkz
78 simp-4l φymZseqN+MmynZzSkNnφ
79 78 55 6 syl2anc φymZseqN+MmynZzSkNnMk
80 71 79 fsumrecl φymZseqN+MmynZzSk=NnMk
81 simplr φymZseqN+MmynZzSkNnzS
82 78 55 81 7 syl12anc φymZseqN+MmynZzSkNnFkzMk
83 71 74 79 82 fsumle φymZseqN+MmynZzSk=NnFkzk=NnMk
84 80 recnd φymZseqN+MmynZzSk=NnMk
85 84 abscld φymZseqN+MmynZzSk=NnMk
86 80 leabsd φymZseqN+MmynZzSk=NnMkk=NnMk
87 eqidd φymZseqN+MmynZzSkNnMk=Mk
88 78 55 10 syl2anc φymZseqN+MmynZzSkNnMk
89 87 45 88 fsumser φymZseqN+MmynZzSk=NnMk=seqN+Mn
90 89 fveq2d φymZseqN+MmynZzSk=NnMk=seqN+Mn
91 simprr φymZseqN+MmymZseqN+Mmy
92 fveq2 m=nseqN+Mm=seqN+Mn
93 92 fveq2d m=nseqN+Mm=seqN+Mn
94 93 breq1d m=nseqN+MmyseqN+Mny
95 94 rspccva mZseqN+MmynZseqN+Mny
96 91 95 sylan φymZseqN+MmynZseqN+Mny
97 96 adantr φymZseqN+MmynZzSseqN+Mny
98 90 97 eqbrtrd φymZseqN+MmynZzSk=NnMky
99 80 85 76 86 98 letrd φymZseqN+MmynZzSk=NnMky
100 75 80 76 83 99 letrd φymZseqN+MmynZzSk=NnFkzy
101 73 75 76 77 100 letrd φymZseqN+MmynZzSk=NnFkzy
102 70 101 eqbrtrd φymZseqN+MmynZzSseqNf+Fnzy
103 102 ralrimiva φymZseqN+MmynZzSseqNf+Fnzy
104 brralrspcev yzSseqNf+FnzyxzSseqNf+Fnzx
105 24 103 104 syl2anc φymZseqN+MmynZxzSseqNf+Fnzx
106 9 adantr φymZseqN+MmyseqNf+FuST
107 1 16 23 105 106 ulmbdd φymZseqN+MmyxzSTzx
108 15 107 rexlimddv φxzSTzx