| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mtest.z |  | 
						
							| 2 |  | mtest.n |  | 
						
							| 3 |  | mtest.s |  | 
						
							| 4 |  | mtest.f |  | 
						
							| 5 |  | mtest.m |  | 
						
							| 6 |  | mtest.c |  | 
						
							| 7 |  | mtest.l |  | 
						
							| 8 |  | mtest.d |  | 
						
							| 9 |  | mtest.t |  | 
						
							| 10 | 6 | recnd |  | 
						
							| 11 | 1 2 10 | serf |  | 
						
							| 12 | 11 | ffvelcdmda |  | 
						
							| 13 | 12 | ralrimiva |  | 
						
							| 14 | 1 | climbdd |  | 
						
							| 15 | 2 8 13 14 | syl3anc |  | 
						
							| 16 | 2 | adantr |  | 
						
							| 17 |  | seqfn |  | 
						
							| 18 | 2 17 | syl |  | 
						
							| 19 | 1 | fneq2i |  | 
						
							| 20 | 18 19 | sylibr |  | 
						
							| 21 |  | ulmf2 |  | 
						
							| 22 | 20 9 21 | syl2anc |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | simplrl |  | 
						
							| 25 |  | fveq2 |  | 
						
							| 26 | 25 | mpteq2dv |  | 
						
							| 27 | 26 | seqeq3d |  | 
						
							| 28 | 27 | fveq1d |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 |  | fvex |  | 
						
							| 31 | 28 29 30 | fvmpt |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 | 4 | ad3antrrr |  | 
						
							| 34 | 33 | feqmptd |  | 
						
							| 35 | 33 | ffvelcdmda |  | 
						
							| 36 |  | elmapi |  | 
						
							| 37 | 35 36 | syl |  | 
						
							| 38 | 37 | feqmptd |  | 
						
							| 39 | 38 | mpteq2dva |  | 
						
							| 40 | 34 39 | eqtrd |  | 
						
							| 41 | 40 | seqeq3d |  | 
						
							| 42 | 41 | fveq1d |  | 
						
							| 43 | 3 | ad3antrrr |  | 
						
							| 44 |  | simplr |  | 
						
							| 45 | 44 1 | eleqtrdi |  | 
						
							| 46 |  | elfzuz |  | 
						
							| 47 | 46 1 | eleqtrrdi |  | 
						
							| 48 | 47 | ssriv |  | 
						
							| 49 | 48 | a1i |  | 
						
							| 50 | 37 | ffvelcdmda |  | 
						
							| 51 | 50 | anasss |  | 
						
							| 52 | 43 45 49 51 | seqof2 |  | 
						
							| 53 | 42 52 | eqtrd |  | 
						
							| 54 | 53 | fveq1d |  | 
						
							| 55 | 47 | adantl |  | 
						
							| 56 |  | fveq2 |  | 
						
							| 57 | 56 | fveq1d |  | 
						
							| 58 |  | eqid |  | 
						
							| 59 |  | fvex |  | 
						
							| 60 | 57 58 59 | fvmpt |  | 
						
							| 61 | 55 60 | syl |  | 
						
							| 62 |  | simplr |  | 
						
							| 63 | 37 62 | ffvelcdmd |  | 
						
							| 64 | 63 | fmpttd |  | 
						
							| 65 | 64 | ffvelcdmda |  | 
						
							| 66 | 47 65 | sylan2 |  | 
						
							| 67 | 61 66 | eqeltrrd |  | 
						
							| 68 | 61 45 67 | fsumser |  | 
						
							| 69 | 32 54 68 | 3eqtr4d |  | 
						
							| 70 | 69 | fveq2d |  | 
						
							| 71 |  | fzfid |  | 
						
							| 72 | 71 67 | fsumcl |  | 
						
							| 73 | 72 | abscld |  | 
						
							| 74 | 67 | abscld |  | 
						
							| 75 | 71 74 | fsumrecl |  | 
						
							| 76 | 24 | adantr |  | 
						
							| 77 | 71 67 | fsumabs |  | 
						
							| 78 |  | simp-4l |  | 
						
							| 79 | 78 55 6 | syl2anc |  | 
						
							| 80 | 71 79 | fsumrecl |  | 
						
							| 81 |  | simplr |  | 
						
							| 82 | 78 55 81 7 | syl12anc |  | 
						
							| 83 | 71 74 79 82 | fsumle |  | 
						
							| 84 | 80 | recnd |  | 
						
							| 85 | 84 | abscld |  | 
						
							| 86 | 80 | leabsd |  | 
						
							| 87 |  | eqidd |  | 
						
							| 88 | 78 55 10 | syl2anc |  | 
						
							| 89 | 87 45 88 | fsumser |  | 
						
							| 90 | 89 | fveq2d |  | 
						
							| 91 |  | simprr |  | 
						
							| 92 |  | fveq2 |  | 
						
							| 93 | 92 | fveq2d |  | 
						
							| 94 | 93 | breq1d |  | 
						
							| 95 | 94 | rspccva |  | 
						
							| 96 | 91 95 | sylan |  | 
						
							| 97 | 96 | adantr |  | 
						
							| 98 | 90 97 | eqbrtrd |  | 
						
							| 99 | 80 85 76 86 98 | letrd |  | 
						
							| 100 | 75 80 76 83 99 | letrd |  | 
						
							| 101 | 73 75 76 77 100 | letrd |  | 
						
							| 102 | 70 101 | eqbrtrd |  | 
						
							| 103 | 102 | ralrimiva |  | 
						
							| 104 |  | brralrspcev |  | 
						
							| 105 | 24 103 104 | syl2anc |  | 
						
							| 106 | 9 | adantr |  | 
						
							| 107 | 1 16 23 105 106 | ulmbdd |  | 
						
							| 108 | 15 107 | rexlimddv |  |