| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nsgmgc.b |  | 
						
							| 2 |  | nsgmgc.s |  | 
						
							| 3 |  | nsgmgc.t |  | 
						
							| 4 |  | nsgmgc.j |  | 
						
							| 5 |  | nsgmgc.v |  | 
						
							| 6 |  | nsgmgc.w |  | 
						
							| 7 |  | nsgmgc.q |  | 
						
							| 8 |  | nsgmgc.p |  | 
						
							| 9 |  | nsgmgc.e |  | 
						
							| 10 |  | nsgmgc.f |  | 
						
							| 11 |  | nsgmgc.n |  | 
						
							| 12 |  | nfv |  | 
						
							| 13 |  | vex |  | 
						
							| 14 | 13 | mptex |  | 
						
							| 15 | 14 | rnex |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 | 12 16 9 | fnmptd |  | 
						
							| 18 |  | mpteq1 |  | 
						
							| 19 | 18 | rneqd |  | 
						
							| 20 | 19 | cbvmptv |  | 
						
							| 21 | 9 20 | eqtri |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 11 | adantr |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 2 | ssrab3 |  | 
						
							| 26 | 25 | a1i |  | 
						
							| 27 | 1 7 8 21 22 23 24 26 | qusima |  | 
						
							| 28 | 1 7 22 | qusghm |  | 
						
							| 29 | 23 28 | syl |  | 
						
							| 30 | 25 | a1i |  | 
						
							| 31 | 30 | sselda |  | 
						
							| 32 |  | ghmima |  | 
						
							| 33 | 29 31 32 | syl2anc |  | 
						
							| 34 | 27 33 | eqeltrd |  | 
						
							| 35 | 34 3 | eleqtrrdi |  | 
						
							| 36 | 35 | ralrimiva |  | 
						
							| 37 |  | ffnfv |  | 
						
							| 38 | 17 36 37 | sylanbrc |  | 
						
							| 39 |  | sseq2 |  | 
						
							| 40 | 11 | adantr |  | 
						
							| 41 |  | simpr |  | 
						
							| 42 | 41 3 | eleqtrdi |  | 
						
							| 43 | 1 7 8 40 42 | nsgmgclem |  | 
						
							| 44 |  | nsgsubg |  | 
						
							| 45 | 11 44 | syl |  | 
						
							| 46 | 1 | subgss |  | 
						
							| 47 | 45 46 | syl |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 45 | ad2antrr |  | 
						
							| 50 |  | simpr |  | 
						
							| 51 | 8 | grplsmid |  | 
						
							| 52 | 49 50 51 | syl2anc |  | 
						
							| 53 | 11 | ad2antrr |  | 
						
							| 54 | 42 | adantr |  | 
						
							| 55 | 7 | nsgqus0 |  | 
						
							| 56 | 53 54 55 | syl2anc |  | 
						
							| 57 | 52 56 | eqeltrd |  | 
						
							| 58 | 48 57 | ssrabdv |  | 
						
							| 59 | 39 43 58 | elrabd |  | 
						
							| 60 | 59 2 | eleqtrrdi |  | 
						
							| 61 | 60 10 | fmptd |  | 
						
							| 62 | 38 61 | jca |  | 
						
							| 63 | 1 | subgss |  | 
						
							| 64 | 31 63 | syl |  | 
						
							| 65 | 64 | ad2antrr |  | 
						
							| 66 | 9 | fvmpt2 |  | 
						
							| 67 | 24 15 66 | sylancl |  | 
						
							| 68 | 67 | ad3antrrr |  | 
						
							| 69 |  | simplr |  | 
						
							| 70 | 68 69 | eqsstrrd |  | 
						
							| 71 |  | eqid |  | 
						
							| 72 |  | simpr |  | 
						
							| 73 |  | sneq |  | 
						
							| 74 | 73 | oveq1d |  | 
						
							| 75 | 74 | eqeq2d |  | 
						
							| 76 | 75 | adantl |  | 
						
							| 77 |  | eqidd |  | 
						
							| 78 | 72 76 77 | rspcedvd |  | 
						
							| 79 |  | ovexd |  | 
						
							| 80 | 71 78 79 | elrnmptd |  | 
						
							| 81 | 70 80 | sseldd |  | 
						
							| 82 | 65 81 | ssrabdv |  | 
						
							| 83 |  | simpr |  | 
						
							| 84 | 1 | fvexi |  | 
						
							| 85 | 84 | rabex |  | 
						
							| 86 | 10 | fvmpt2 |  | 
						
							| 87 | 83 85 86 | sylancl |  | 
						
							| 88 | 87 | adantr |  | 
						
							| 89 | 82 88 | sseqtrrd |  | 
						
							| 90 | 67 | ad2antrr |  | 
						
							| 91 |  | simpr |  | 
						
							| 92 | 91 | sselda |  | 
						
							| 93 | 87 | ad2antrr |  | 
						
							| 94 | 92 93 | eleqtrd |  | 
						
							| 95 |  | sneq |  | 
						
							| 96 | 95 | oveq1d |  | 
						
							| 97 | 96 | eleq1d |  | 
						
							| 98 | 97 | elrab |  | 
						
							| 99 | 98 | simprbi |  | 
						
							| 100 | 94 99 | syl |  | 
						
							| 101 | 100 | ralrimiva |  | 
						
							| 102 | 71 | rnmptss |  | 
						
							| 103 | 101 102 | syl |  | 
						
							| 104 | 90 103 | eqsstrd |  | 
						
							| 105 | 89 104 | impbida |  | 
						
							| 106 | 3 | fvexi |  | 
						
							| 107 |  | eqid |  | 
						
							| 108 | 6 107 | ipole |  | 
						
							| 109 | 106 35 83 108 | mp3an2ani |  | 
						
							| 110 |  | fvex |  | 
						
							| 111 | 2 110 | rabex2 |  | 
						
							| 112 | 61 | ffvelcdmda |  | 
						
							| 113 | 112 | adantlr |  | 
						
							| 114 |  | eqid |  | 
						
							| 115 | 5 114 | ipole |  | 
						
							| 116 | 111 24 113 115 | mp3an2ani |  | 
						
							| 117 | 105 109 116 | 3bitr4d |  | 
						
							| 118 | 117 | anasss |  | 
						
							| 119 | 118 | ralrimivva |  | 
						
							| 120 | 5 | ipobas |  | 
						
							| 121 | 111 120 | ax-mp |  | 
						
							| 122 | 6 | ipobas |  | 
						
							| 123 | 106 122 | ax-mp |  | 
						
							| 124 | 5 | ipopos |  | 
						
							| 125 |  | posprs |  | 
						
							| 126 | 124 125 | mp1i |  | 
						
							| 127 | 6 | ipopos |  | 
						
							| 128 |  | posprs |  | 
						
							| 129 | 127 128 | mp1i |  | 
						
							| 130 | 121 123 114 107 4 126 129 | mgcval |  | 
						
							| 131 | 62 119 130 | mpbir2and |  |