Metamath Proof Explorer


Theorem nsgmgc

Description: There is a monotone Galois connection between the lattice of subgroups of a group G containing a normal subgroup N and the lattice of subgroups of the quotient group G / N . This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses nsgmgc.b B=BaseG
nsgmgc.s S=hSubGrpG|Nh
nsgmgc.t T=SubGrpQ
nsgmgc.j No typesetting found for |- J = ( V MGalConn W ) with typecode |-
nsgmgc.v V=toIncS
nsgmgc.w W=toIncT
nsgmgc.q Q=G/𝑠G~QGN
nsgmgc.p ˙=LSSumG
nsgmgc.e E=hSranxhx˙N
nsgmgc.f F=fTaB|a˙Nf
nsgmgc.n φNNrmSGrpG
Assertion nsgmgc φEJF

Proof

Step Hyp Ref Expression
1 nsgmgc.b B=BaseG
2 nsgmgc.s S=hSubGrpG|Nh
3 nsgmgc.t T=SubGrpQ
4 nsgmgc.j Could not format J = ( V MGalConn W ) : No typesetting found for |- J = ( V MGalConn W ) with typecode |-
5 nsgmgc.v V=toIncS
6 nsgmgc.w W=toIncT
7 nsgmgc.q Q=G/𝑠G~QGN
8 nsgmgc.p ˙=LSSumG
9 nsgmgc.e E=hSranxhx˙N
10 nsgmgc.f F=fTaB|a˙Nf
11 nsgmgc.n φNNrmSGrpG
12 nfv hφ
13 vex hV
14 13 mptex xhx˙NV
15 14 rnex ranxhx˙NV
16 15 a1i φhSranxhx˙NV
17 12 16 9 fnmptd φEFnS
18 mpteq1 h=kxhx˙N=xkx˙N
19 18 rneqd h=kranxhx˙N=ranxkx˙N
20 19 cbvmptv hSranxhx˙N=kSranxkx˙N
21 9 20 eqtri E=kSranxkx˙N
22 eqid xBxG~QGN=xBxG~QGN
23 11 adantr φhSNNrmSGrpG
24 simpr φhShS
25 2 ssrab3 SSubGrpG
26 25 a1i φhSSSubGrpG
27 1 7 8 21 22 23 24 26 qusima φhSEh=xBxG~QGNh
28 1 7 22 qusghm NNrmSGrpGxBxG~QGNGGrpHomQ
29 23 28 syl φhSxBxG~QGNGGrpHomQ
30 25 a1i φSSubGrpG
31 30 sselda φhShSubGrpG
32 ghmima xBxG~QGNGGrpHomQhSubGrpGxBxG~QGNhSubGrpQ
33 29 31 32 syl2anc φhSxBxG~QGNhSubGrpQ
34 27 33 eqeltrd φhSEhSubGrpQ
35 34 3 eleqtrrdi φhSEhT
36 35 ralrimiva φhSEhT
37 ffnfv E:STEFnShSEhT
38 17 36 37 sylanbrc φE:ST
39 sseq2 h=aB|a˙NfNhNaB|a˙Nf
40 11 adantr φfTNNrmSGrpG
41 simpr φfTfT
42 41 3 eleqtrdi φfTfSubGrpQ
43 1 7 8 40 42 nsgmgclem φfTaB|a˙NfSubGrpG
44 nsgsubg NNrmSGrpGNSubGrpG
45 11 44 syl φNSubGrpG
46 1 subgss NSubGrpGNB
47 45 46 syl φNB
48 47 adantr φfTNB
49 45 ad2antrr φfTaNNSubGrpG
50 simpr φfTaNaN
51 8 grplsmid NSubGrpGaNa˙N=N
52 49 50 51 syl2anc φfTaNa˙N=N
53 11 ad2antrr φfTaNNNrmSGrpG
54 42 adantr φfTaNfSubGrpQ
55 7 nsgqus0 NNrmSGrpGfSubGrpQNf
56 53 54 55 syl2anc φfTaNNf
57 52 56 eqeltrd φfTaNa˙Nf
58 48 57 ssrabdv φfTNaB|a˙Nf
59 39 43 58 elrabd φfTaB|a˙NfhSubGrpG|Nh
60 59 2 eleqtrrdi φfTaB|a˙NfS
61 60 10 fmptd φF:TS
62 38 61 jca φE:STF:TS
63 1 subgss hSubGrpGhB
64 31 63 syl φhShB
65 64 ad2antrr φhSfTEhfhB
66 9 fvmpt2 hSranxhx˙NVEh=ranxhx˙N
67 24 15 66 sylancl φhSEh=ranxhx˙N
68 67 ad5ant12 φhSfTEhfahEh=ranxhx˙N
69 simplr φhSfTEhfahEhf
70 68 69 eqsstrrd φhSfTEhfahranxhx˙Nf
71 eqid xhx˙N=xhx˙N
72 simpr φhSfTEhfahah
73 sneq x=ax=a
74 73 oveq1d x=ax˙N=a˙N
75 74 eqeq2d x=aa˙N=x˙Na˙N=a˙N
76 75 adantl φhSfTEhfahx=aa˙N=x˙Na˙N=a˙N
77 eqidd φhSfTEhfaha˙N=a˙N
78 72 76 77 rspcedvd φhSfTEhfahxha˙N=x˙N
79 ovexd φhSfTEhfaha˙NV
80 71 78 79 elrnmptd φhSfTEhfaha˙Nranxhx˙N
81 70 80 sseldd φhSfTEhfaha˙Nf
82 65 81 ssrabdv φhSfTEhfhaB|a˙Nf
83 simpr φhSfTfT
84 1 fvexi BV
85 84 rabex aB|a˙NfV
86 10 fvmpt2 fTaB|a˙NfVFf=aB|a˙Nf
87 83 85 86 sylancl φhSfTFf=aB|a˙Nf
88 87 adantr φhSfTEhfFf=aB|a˙Nf
89 82 88 sseqtrrd φhSfTEhfhFf
90 67 ad2antrr φhSfThFfEh=ranxhx˙N
91 simpr φhSfThFfhFf
92 91 sselda φhSfThFfxhxFf
93 87 ad2antrr φhSfThFfxhFf=aB|a˙Nf
94 92 93 eleqtrd φhSfThFfxhxaB|a˙Nf
95 sneq a=xa=x
96 95 oveq1d a=xa˙N=x˙N
97 96 eleq1d a=xa˙Nfx˙Nf
98 97 elrab xaB|a˙NfxBx˙Nf
99 98 simprbi xaB|a˙Nfx˙Nf
100 94 99 syl φhSfThFfxhx˙Nf
101 100 ralrimiva φhSfThFfxhx˙Nf
102 71 rnmptss xhx˙Nfranxhx˙Nf
103 101 102 syl φhSfThFfranxhx˙Nf
104 90 103 eqsstrd φhSfThFfEhf
105 89 104 impbida φhSfTEhfhFf
106 3 fvexi TV
107 eqid W=W
108 6 107 ipole TVEhTfTEhWfEhf
109 106 35 83 108 mp3an2ani φhSfTEhWfEhf
110 fvex SubGrpGV
111 2 110 rabex2 SV
112 61 ffvelcdmda φfTFfS
113 112 adantlr φhSfTFfS
114 eqid V=V
115 5 114 ipole SVhSFfShVFfhFf
116 111 24 113 115 mp3an2ani φhSfThVFfhFf
117 105 109 116 3bitr4d φhSfTEhWfhVFf
118 117 anasss φhSfTEhWfhVFf
119 118 ralrimivva φhSfTEhWfhVFf
120 5 ipobas SVS=BaseV
121 111 120 ax-mp S=BaseV
122 6 ipobas TVT=BaseW
123 106 122 ax-mp T=BaseW
124 5 ipopos VPoset
125 posprs VPosetVProset
126 124 125 mp1i φVProset
127 6 ipopos WPoset
128 posprs WPosetWProset
129 127 128 mp1i φWProset
130 121 123 114 107 4 126 129 mgcval φEJFE:STF:TShSfTEhWfhVFf
131 62 119 130 mpbir2and φEJF