Metamath Proof Explorer


Theorem nsgmgc

Description: There is a monotone Galois connection between the lattice of subgroups of a group G containing a normal subgroup N and the lattice of subgroups of the quotient group G / N . This is sometimes called the lattice theorem. (Contributed by Thierry Arnoux, 27-Jul-2024)

Ref Expression
Hypotheses nsgmgc.b B = Base G
nsgmgc.s S = h SubGrp G | N h
nsgmgc.t T = SubGrp Q
nsgmgc.j No typesetting found for |- J = ( V MGalConn W ) with typecode |-
nsgmgc.v V = toInc S
nsgmgc.w W = toInc T
nsgmgc.q Q = G / 𝑠 G ~ QG N
nsgmgc.p ˙ = LSSum G
nsgmgc.e E = h S ran x h x ˙ N
nsgmgc.f F = f T a B | a ˙ N f
nsgmgc.n φ N NrmSGrp G
Assertion nsgmgc φ E J F

Proof

Step Hyp Ref Expression
1 nsgmgc.b B = Base G
2 nsgmgc.s S = h SubGrp G | N h
3 nsgmgc.t T = SubGrp Q
4 nsgmgc.j Could not format J = ( V MGalConn W ) : No typesetting found for |- J = ( V MGalConn W ) with typecode |-
5 nsgmgc.v V = toInc S
6 nsgmgc.w W = toInc T
7 nsgmgc.q Q = G / 𝑠 G ~ QG N
8 nsgmgc.p ˙ = LSSum G
9 nsgmgc.e E = h S ran x h x ˙ N
10 nsgmgc.f F = f T a B | a ˙ N f
11 nsgmgc.n φ N NrmSGrp G
12 nfv h φ
13 vex h V
14 13 mptex x h x ˙ N V
15 14 rnex ran x h x ˙ N V
16 15 a1i φ h S ran x h x ˙ N V
17 12 16 9 fnmptd φ E Fn S
18 mpteq1 h = k x h x ˙ N = x k x ˙ N
19 18 rneqd h = k ran x h x ˙ N = ran x k x ˙ N
20 19 cbvmptv h S ran x h x ˙ N = k S ran x k x ˙ N
21 9 20 eqtri E = k S ran x k x ˙ N
22 eqid x B x G ~ QG N = x B x G ~ QG N
23 11 adantr φ h S N NrmSGrp G
24 simpr φ h S h S
25 2 ssrab3 S SubGrp G
26 25 a1i φ h S S SubGrp G
27 1 7 8 21 22 23 24 26 qusima φ h S E h = x B x G ~ QG N h
28 1 7 22 qusghm N NrmSGrp G x B x G ~ QG N G GrpHom Q
29 23 28 syl φ h S x B x G ~ QG N G GrpHom Q
30 25 a1i φ S SubGrp G
31 30 sselda φ h S h SubGrp G
32 ghmima x B x G ~ QG N G GrpHom Q h SubGrp G x B x G ~ QG N h SubGrp Q
33 29 31 32 syl2anc φ h S x B x G ~ QG N h SubGrp Q
34 27 33 eqeltrd φ h S E h SubGrp Q
35 34 3 eleqtrrdi φ h S E h T
36 35 ralrimiva φ h S E h T
37 ffnfv E : S T E Fn S h S E h T
38 17 36 37 sylanbrc φ E : S T
39 sseq2 h = a B | a ˙ N f N h N a B | a ˙ N f
40 11 adantr φ f T N NrmSGrp G
41 simpr φ f T f T
42 41 3 eleqtrdi φ f T f SubGrp Q
43 1 7 8 40 42 nsgmgclem φ f T a B | a ˙ N f SubGrp G
44 nsgsubg N NrmSGrp G N SubGrp G
45 11 44 syl φ N SubGrp G
46 1 subgss N SubGrp G N B
47 45 46 syl φ N B
48 47 adantr φ f T N B
49 45 ad2antrr φ f T a N N SubGrp G
50 simpr φ f T a N a N
51 8 grplsmid N SubGrp G a N a ˙ N = N
52 49 50 51 syl2anc φ f T a N a ˙ N = N
53 11 ad2antrr φ f T a N N NrmSGrp G
54 42 adantr φ f T a N f SubGrp Q
55 7 nsgqus0 N NrmSGrp G f SubGrp Q N f
56 53 54 55 syl2anc φ f T a N N f
57 52 56 eqeltrd φ f T a N a ˙ N f
58 48 57 ssrabdv φ f T N a B | a ˙ N f
59 39 43 58 elrabd φ f T a B | a ˙ N f h SubGrp G | N h
60 59 2 eleqtrrdi φ f T a B | a ˙ N f S
61 60 10 fmptd φ F : T S
62 38 61 jca φ E : S T F : T S
63 1 subgss h SubGrp G h B
64 31 63 syl φ h S h B
65 64 ad2antrr φ h S f T E h f h B
66 9 fvmpt2 h S ran x h x ˙ N V E h = ran x h x ˙ N
67 24 15 66 sylancl φ h S E h = ran x h x ˙ N
68 67 ad5ant12 φ h S f T E h f a h E h = ran x h x ˙ N
69 simplr φ h S f T E h f a h E h f
70 68 69 eqsstrrd φ h S f T E h f a h ran x h x ˙ N f
71 eqid x h x ˙ N = x h x ˙ N
72 simpr φ h S f T E h f a h a h
73 sneq x = a x = a
74 73 oveq1d x = a x ˙ N = a ˙ N
75 74 eqeq2d x = a a ˙ N = x ˙ N a ˙ N = a ˙ N
76 75 adantl φ h S f T E h f a h x = a a ˙ N = x ˙ N a ˙ N = a ˙ N
77 eqidd φ h S f T E h f a h a ˙ N = a ˙ N
78 72 76 77 rspcedvd φ h S f T E h f a h x h a ˙ N = x ˙ N
79 ovexd φ h S f T E h f a h a ˙ N V
80 71 78 79 elrnmptd φ h S f T E h f a h a ˙ N ran x h x ˙ N
81 70 80 sseldd φ h S f T E h f a h a ˙ N f
82 65 81 ssrabdv φ h S f T E h f h a B | a ˙ N f
83 simpr φ h S f T f T
84 1 fvexi B V
85 84 rabex a B | a ˙ N f V
86 10 fvmpt2 f T a B | a ˙ N f V F f = a B | a ˙ N f
87 83 85 86 sylancl φ h S f T F f = a B | a ˙ N f
88 87 adantr φ h S f T E h f F f = a B | a ˙ N f
89 82 88 sseqtrrd φ h S f T E h f h F f
90 67 ad2antrr φ h S f T h F f E h = ran x h x ˙ N
91 simpr φ h S f T h F f h F f
92 91 sselda φ h S f T h F f x h x F f
93 87 ad2antrr φ h S f T h F f x h F f = a B | a ˙ N f
94 92 93 eleqtrd φ h S f T h F f x h x a B | a ˙ N f
95 sneq a = x a = x
96 95 oveq1d a = x a ˙ N = x ˙ N
97 96 eleq1d a = x a ˙ N f x ˙ N f
98 97 elrab x a B | a ˙ N f x B x ˙ N f
99 98 simprbi x a B | a ˙ N f x ˙ N f
100 94 99 syl φ h S f T h F f x h x ˙ N f
101 100 ralrimiva φ h S f T h F f x h x ˙ N f
102 71 rnmptss x h x ˙ N f ran x h x ˙ N f
103 101 102 syl φ h S f T h F f ran x h x ˙ N f
104 90 103 eqsstrd φ h S f T h F f E h f
105 89 104 impbida φ h S f T E h f h F f
106 3 fvexi T V
107 eqid W = W
108 6 107 ipole T V E h T f T E h W f E h f
109 106 35 83 108 mp3an2ani φ h S f T E h W f E h f
110 fvex SubGrp G V
111 2 110 rabex2 S V
112 61 ffvelrnda φ f T F f S
113 112 adantlr φ h S f T F f S
114 eqid V = V
115 5 114 ipole S V h S F f S h V F f h F f
116 111 24 113 115 mp3an2ani φ h S f T h V F f h F f
117 105 109 116 3bitr4d φ h S f T E h W f h V F f
118 117 anasss φ h S f T E h W f h V F f
119 118 ralrimivva φ h S f T E h W f h V F f
120 5 ipobas S V S = Base V
121 111 120 ax-mp S = Base V
122 6 ipobas T V T = Base W
123 106 122 ax-mp T = Base W
124 5 ipopos V Poset
125 posprs V Poset V Proset
126 124 125 mp1i φ V Proset
127 6 ipopos W Poset
128 posprs W Poset W Proset
129 127 128 mp1i φ W Proset
130 121 123 114 107 4 126 129 mgcval φ E J F E : S T F : T S h S f T E h W f h V F f
131 62 119 130 mpbir2and φ E J F