Metamath Proof Explorer


Theorem ovnovollem1

Description: if F is a cover of B in RR , then I is the corresponding cover in the space of 1-dimensional reals. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnovollem1.a φAV
ovnovollem1.f φF2
ovnovollem1.i I=jAFj
ovnovollem1.s φBran.F
ovnovollem1.b φBW
ovnovollem1.z φZ=sum^vol.F
Assertion ovnovollem1 φi2ABAjkA.ijkZ=sum^jkAvol.ijk

Proof

Step Hyp Ref Expression
1 ovnovollem1.a φAV
2 ovnovollem1.f φF2
3 ovnovollem1.i I=jAFj
4 ovnovollem1.s φBran.F
5 ovnovollem1.b φBW
6 ovnovollem1.z φZ=sum^vol.F
7 eqidd φjAFj=AFj
8 1 adantr φjAV
9 elmapi F2F:2
10 2 9 syl φF:2
11 10 ffvelcdmda φjFj2
12 fsng AVFj2AFj:AFjAFj=AFj
13 8 11 12 syl2anc φjAFj:AFjAFj=AFj
14 7 13 mpbird φjAFj:AFj
15 11 snssd φjFj2
16 14 15 fssd φjAFj:A2
17 reex V
18 17 17 xpex 2V
19 18 a1i φj2V
20 snex AV
21 20 a1i φjAV
22 19 21 elmapd φjAFj2AAFj:A2
23 16 22 mpbird φjAFj2A
24 23 3 fmptd φI:2A
25 ovexd φ2AV
26 nnex V
27 26 a1i φV
28 25 27 elmapd φI2AI:2A
29 24 28 mpbird φI2A
30 icof .:*×*𝒫*
31 30 a1i φ.:*×*𝒫*
32 rexpssxrxp 2*×*
33 32 a1i φ2*×*
34 31 33 10 fcoss φ.F:𝒫*
35 34 ffnd φ.FFn
36 fniunfv .FFnj.Fj=ran.F
37 35 36 syl φj.Fj=ran.F
38 37 eqcomd φran.F=j.Fj
39 4 38 sseqtrd φBj.Fj
40 fvex .FjV
41 26 40 iunex j.FjV
42 41 a1i φj.FjV
43 20 a1i φAV
44 1 snn0d φA
45 5 42 43 44 mapss2 φBj.FjBAj.FjA
46 39 45 mpbid φBAj.FjA
47 nfv jφ
48 fvexd φj.FjV
49 47 27 48 1 iunmapsn φj.FjA=j.FjA
50 49 eqcomd φj.FjA=j.FjA
51 elmapfun F2FunF
52 2 51 syl φFunF
53 52 adantr φjFunF
54 simpr φjj
55 10 fdmd φdomF=
56 55 eqcomd φ=domF
57 56 adantr φj=domF
58 54 57 eleqtrd φjjdomF
59 fvco FunFjdomF.Fj=.Fj
60 53 58 59 syl2anc φj.Fj=.Fj
61 60 iuneq2dv φj.Fj=j.Fj
62 61 oveq1d φj.FjA=j.FjA
63 14 ffund φjFunAFj
64 id jj
65 snex AFjV
66 65 a1i jAFjV
67 3 fvmpt2 jAFjVIj=AFj
68 64 66 67 syl2anc jIj=AFj
69 68 adantl φjIj=AFj
70 69 funeqd φjFunIjFunAFj
71 63 70 mpbird φjFunIj
72 71 adantr φjkAFunIj
73 simpr φjkAkA
74 69 dmeqd φjdomIj=domAFj
75 14 fdmd φjdomAFj=A
76 74 75 eqtrd φjdomIj=A
77 76 eleq2d φjkdomIjkA
78 77 adantr φjkAkdomIjkA
79 73 78 mpbird φjkAkdomIj
80 fvco FunIjkdomIj.Ijk=.Ijk
81 72 79 80 syl2anc φjkA.Ijk=.Ijk
82 68 fveq1d jIjk=AFjk
83 82 ad2antlr φjkAIjk=AFjk
84 elsni kAk=A
85 84 fveq2d kAAFjk=AFjA
86 85 adantl φjkAAFjk=AFjA
87 fvexd φFjV
88 fvsng AVFjVAFjA=Fj
89 1 87 88 syl2anc φAFjA=Fj
90 89 ad2antrr φjkAAFjA=Fj
91 83 86 90 3eqtrd φjkAIjk=Fj
92 91 fveq2d φjkA.Ijk=.Fj
93 eqidd φjkA.Fj=.Fj
94 81 92 93 3eqtrd φjkA.Ijk=.Fj
95 94 ixpeq2dva φjkA.Ijk=kA.Fj
96 fvex .FjV
97 20 96 ixpconst kA.Fj=.FjA
98 97 a1i φjkA.Fj=.FjA
99 95 98 eqtrd φjkA.Ijk=.FjA
100 99 iuneq2dv φjkA.Ijk=j.FjA
101 50 62 100 3eqtr4d φj.FjA=jkA.Ijk
102 46 101 sseqtrd φBAjkA.Ijk
103 nfcv _jF
104 ressxr *
105 xpss2 *2×*
106 104 105 ax-mp 2×*
107 106 a1i φ2×*
108 10 107 fssd φF:×*
109 103 108 volicofmpt φvol.F=jvol1stFj2ndFj
110 68 coeq2d j.Ij=.AFj
111 110 fveq1d j.IjA=.AFjA
112 111 adantl φj.IjA=.AFjA
113 snidg AVAA
114 1 113 syl φAA
115 dmsnopg FjVdomAFj=A
116 87 115 syl φdomAFj=A
117 114 116 eleqtrrd φAdomAFj
118 117 adantr φjAdomAFj
119 fvco FunAFjAdomAFj.AFjA=.AFjA
120 63 118 119 syl2anc φj.AFjA=.AFjA
121 fvexd φjFjV
122 8 121 88 syl2anc φjAFjA=Fj
123 1st2nd2 Fj2Fj=1stFj2ndFj
124 11 123 syl φjFj=1stFj2ndFj
125 122 124 eqtrd φjAFjA=1stFj2ndFj
126 125 fveq2d φj.AFjA=.1stFj2ndFj
127 df-ov 1stFj2ndFj=.1stFj2ndFj
128 127 eqcomi .1stFj2ndFj=1stFj2ndFj
129 128 a1i φj.1stFj2ndFj=1stFj2ndFj
130 126 129 eqtrd φj.AFjA=1stFj2ndFj
131 112 120 130 3eqtrd φj.IjA=1stFj2ndFj
132 131 fveq2d φjvol.IjA=vol1stFj2ndFj
133 xp1st Fj21stFj
134 11 133 syl φj1stFj
135 xp2nd Fj22ndFj
136 11 135 syl φj2ndFj
137 volicore 1stFj2ndFjvol1stFj2ndFj
138 134 136 137 syl2anc φjvol1stFj2ndFj
139 132 138 eqeltrd φjvol.IjA
140 139 recnd φjvol.IjA
141 2fveq3 k=Avol.Ijk=vol.IjA
142 141 prodsn AVvol.IjAkAvol.Ijk=vol.IjA
143 8 140 142 syl2anc φjkAvol.Ijk=vol.IjA
144 143 132 eqtr2d φjvol1stFj2ndFj=kAvol.Ijk
145 144 mpteq2dva φjvol1stFj2ndFj=jkAvol.Ijk
146 109 145 eqtrd φvol.F=jkAvol.Ijk
147 146 fveq2d φsum^vol.F=sum^jkAvol.Ijk
148 6 147 eqtrd φZ=sum^jkAvol.Ijk
149 102 148 jca φBAjkA.IjkZ=sum^jkAvol.Ijk
150 fveq1 i=Iij=Ij
151 150 coeq2d i=I.ij=.Ij
152 151 fveq1d i=I.ijk=.Ijk
153 152 ixpeq2dv i=IkA.ijk=kA.Ijk
154 153 iuneq2d i=IjkA.ijk=jkA.Ijk
155 154 sseq2d i=IBAjkA.ijkBAjkA.Ijk
156 simpl i=IkAi=I
157 156 fveq1d i=IkAij=Ij
158 157 coeq2d i=IkA.ij=.Ij
159 158 fveq1d i=IkA.ijk=.Ijk
160 159 fveq2d i=IkAvol.ijk=vol.Ijk
161 160 prodeq2dv i=IkAvol.ijk=kAvol.Ijk
162 161 mpteq2dv i=IjkAvol.ijk=jkAvol.Ijk
163 162 fveq2d i=Isum^jkAvol.ijk=sum^jkAvol.Ijk
164 163 eqeq2d i=IZ=sum^jkAvol.ijkZ=sum^jkAvol.Ijk
165 155 164 anbi12d i=IBAjkA.ijkZ=sum^jkAvol.ijkBAjkA.IjkZ=sum^jkAvol.Ijk
166 165 rspcev I2ABAjkA.IjkZ=sum^jkAvol.Ijki2ABAjkA.ijkZ=sum^jkAvol.ijk
167 29 149 166 syl2anc φi2ABAjkA.ijkZ=sum^jkAvol.ijk