Metamath Proof Explorer


Theorem ovolshftlem1

Description: Lemma for ovolshft . (Contributed by Mario Carneiro, 22-Mar-2014)

Ref Expression
Hypotheses ovolshft.1 φA
ovolshft.2 φC
ovolshft.3 φB=x|xCA
ovolshft.4 M=y*|f2Bran.fy=supranseq1+absf*<
ovolshft.5 S=seq1+absF
ovolshft.6 G=n1stFn+C2ndFn+C
ovolshft.7 φF:2
ovolshft.8 φAran.F
Assertion ovolshftlem1 φsupranS*<M

Proof

Step Hyp Ref Expression
1 ovolshft.1 φA
2 ovolshft.2 φC
3 ovolshft.3 φB=x|xCA
4 ovolshft.4 M=y*|f2Bran.fy=supranseq1+absf*<
5 ovolshft.5 S=seq1+absF
6 ovolshft.6 G=n1stFn+C2ndFn+C
7 ovolshft.7 φF:2
8 ovolshft.8 φAran.F
9 ovolfcl F:2n1stFn2ndFn1stFn2ndFn
10 7 9 sylan φn1stFn2ndFn1stFn2ndFn
11 10 simp1d φn1stFn
12 10 simp2d φn2ndFn
13 2 adantr φnC
14 10 simp3d φn1stFn2ndFn
15 11 12 13 14 leadd1dd φn1stFn+C2ndFn+C
16 df-br 1stFn+C2ndFn+C1stFn+C2ndFn+C
17 15 16 sylib φn1stFn+C2ndFn+C
18 11 13 readdcld φn1stFn+C
19 12 13 readdcld φn2ndFn+C
20 18 19 opelxpd φn1stFn+C2ndFn+C2
21 17 20 elind φn1stFn+C2ndFn+C2
22 21 6 fmptd φG:2
23 eqid absG=absG
24 23 ovolfsf G:2absG:0+∞
25 ffn absG:0+∞absGFn
26 22 24 25 3syl φabsGFn
27 eqid absF=absF
28 27 ovolfsf F:2absF:0+∞
29 ffn absF:0+∞absFFn
30 7 28 29 3syl φabsFFn
31 opex 1stFn+C2ndFn+CV
32 6 fvmpt2 n1stFn+C2ndFn+CVGn=1stFn+C2ndFn+C
33 31 32 mpan2 nGn=1stFn+C2ndFn+C
34 33 fveq2d n2ndGn=2nd1stFn+C2ndFn+C
35 ovex 1stFn+CV
36 ovex 2ndFn+CV
37 35 36 op2nd 2nd1stFn+C2ndFn+C=2ndFn+C
38 34 37 eqtrdi n2ndGn=2ndFn+C
39 33 fveq2d n1stGn=1st1stFn+C2ndFn+C
40 35 36 op1st 1st1stFn+C2ndFn+C=1stFn+C
41 39 40 eqtrdi n1stGn=1stFn+C
42 38 41 oveq12d n2ndGn1stGn=2ndFn+C-1stFn+C
43 42 adantl φn2ndGn1stGn=2ndFn+C-1stFn+C
44 12 recnd φn2ndFn
45 11 recnd φn1stFn
46 13 recnd φnC
47 44 45 46 pnpcan2d φn2ndFn+C-1stFn+C=2ndFn1stFn
48 43 47 eqtrd φn2ndGn1stGn=2ndFn1stFn
49 23 ovolfsval G:2nabsGn=2ndGn1stGn
50 22 49 sylan φnabsGn=2ndGn1stGn
51 27 ovolfsval F:2nabsFn=2ndFn1stFn
52 7 51 sylan φnabsFn=2ndFn1stFn
53 48 50 52 3eqtr4d φnabsGn=absFn
54 26 30 53 eqfnfvd φabsG=absF
55 54 seqeq3d φseq1+absG=seq1+absF
56 55 5 eqtr4di φseq1+absG=S
57 56 rneqd φranseq1+absG=ranS
58 57 supeq1d φsupranseq1+absG*<=supranS*<
59 3 eleq2d φyByx|xCA
60 oveq1 x=yxC=yC
61 60 eleq1d x=yxCAyCA
62 61 elrab yx|xCAyyCA
63 59 62 bitrdi φyByyCA
64 63 biimpa φyByyCA
65 breq2 x=yC1stFn<x1stFn<yC
66 breq1 x=yCx<2ndFnyC<2ndFn
67 65 66 anbi12d x=yC1stFn<xx<2ndFn1stFn<yCyC<2ndFn
68 67 rexbidv x=yCn1stFn<xx<2ndFnn1stFn<yCyC<2ndFn
69 ovolfioo AF:2Aran.FxAn1stFn<xx<2ndFn
70 1 7 69 syl2anc φAran.FxAn1stFn<xx<2ndFn
71 8 70 mpbid φxAn1stFn<xx<2ndFn
72 71 adantr φyyCAxAn1stFn<xx<2ndFn
73 simprr φyyCAyCA
74 68 72 73 rspcdva φyyCAn1stFn<yCyC<2ndFn
75 41 adantl φyyCAn1stGn=1stFn+C
76 75 breq1d φyyCAn1stGn<y1stFn+C<y
77 11 adantlr φyyCAn1stFn
78 2 ad2antrr φyyCAnC
79 simplrl φyyCAny
80 77 78 79 ltaddsubd φyyCAn1stFn+C<y1stFn<yC
81 76 80 bitrd φyyCAn1stGn<y1stFn<yC
82 38 adantl φyyCAn2ndGn=2ndFn+C
83 82 breq2d φyyCAny<2ndGny<2ndFn+C
84 12 adantlr φyyCAn2ndFn
85 79 78 84 ltsubaddd φyyCAnyC<2ndFny<2ndFn+C
86 83 85 bitr4d φyyCAny<2ndGnyC<2ndFn
87 81 86 anbi12d φyyCAn1stGn<yy<2ndGn1stFn<yCyC<2ndFn
88 87 rexbidva φyyCAn1stGn<yy<2ndGnn1stFn<yCyC<2ndFn
89 74 88 mpbird φyyCAn1stGn<yy<2ndGn
90 64 89 syldan φyBn1stGn<yy<2ndGn
91 90 ralrimiva φyBn1stGn<yy<2ndGn
92 ssrab2 x|xCA
93 3 92 eqsstrdi φB
94 ovolfioo BG:2Bran.GyBn1stGn<yy<2ndGn
95 93 22 94 syl2anc φBran.GyBn1stGn<yy<2ndGn
96 91 95 mpbird φBran.G
97 eqid seq1+absG=seq1+absG
98 4 97 elovolmr G:2Bran.Gsupranseq1+absG*<M
99 22 96 98 syl2anc φsupranseq1+absG*<M
100 58 99 eqeltrrd φsupranS*<M