Metamath Proof Explorer


Theorem pclfinclN

Description: The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN and also pclcmpatN . (Contributed by NM, 13-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfincl.a A=AtomsK
pclfincl.c U=PClK
pclfincl.s S=PSubClK
Assertion pclfinclN KHLXAXFinUXS

Proof

Step Hyp Ref Expression
1 pclfincl.a A=AtomsK
2 pclfincl.c U=PClK
3 pclfincl.s S=PSubClK
4 sseq1 x=xAA
5 4 anbi2d x=KHLxAKHLA
6 fveq2 x=Ux=U
7 6 eleq1d x=UxSUS
8 5 7 imbi12d x=KHLxAUxSKHLAUS
9 sseq1 x=yxAyA
10 9 anbi2d x=yKHLxAKHLyA
11 fveq2 x=yUx=Uy
12 11 eleq1d x=yUxSUyS
13 10 12 imbi12d x=yKHLxAUxSKHLyAUyS
14 sseq1 x=yzxAyzA
15 14 anbi2d x=yzKHLxAKHLyzA
16 fveq2 x=yzUx=Uyz
17 16 eleq1d x=yzUxSUyzS
18 15 17 imbi12d x=yzKHLxAUxSKHLyzAUyzS
19 sseq1 x=XxAXA
20 19 anbi2d x=XKHLxAKHLXA
21 fveq2 x=XUx=UX
22 21 eleq1d x=XUxSUXS
23 20 22 imbi12d x=XKHLxAUxSKHLXAUXS
24 2 pcl0N KHLU=
25 3 0psubclN KHLS
26 24 25 eqeltrd KHLUS
27 26 adantr KHLAUS
28 anass KHLyAzAKHLyAzA
29 vex zV
30 29 snss zAzA
31 30 anbi2i yAzAyAzA
32 unss yAzAyzA
33 31 32 bitri yAzAyzA
34 33 anbi2i KHLyAzAKHLyzA
35 28 34 bitr2i KHLyzAKHLyAzA
36 simpllr yFiny=KHLyAUySzAy=
37 36 uneq1d yFiny=KHLyAUySzAyz=z
38 uncom z=z
39 un0 z=z
40 38 39 eqtri z=z
41 37 40 eqtrdi yFiny=KHLyAUySzAyz=z
42 41 fveq2d yFiny=KHLyAUySzAUyz=Uz
43 simplrl yFiny=KHLyAUySzAKHL
44 hlatl KHLKAtLat
45 43 44 syl yFiny=KHLyAUySzAKAtLat
46 simprr yFiny=KHLyAUySzAzA
47 eqid PSubSpK=PSubSpK
48 1 47 snatpsubN KAtLatzAzPSubSpK
49 45 46 48 syl2anc yFiny=KHLyAUySzAzPSubSpK
50 47 2 pclidN KHLzPSubSpKUz=z
51 43 49 50 syl2anc yFiny=KHLyAUySzAUz=z
52 42 51 eqtrd yFiny=KHLyAUySzAUyz=z
53 1 3 atpsubclN KHLzAzS
54 43 46 53 syl2anc yFiny=KHLyAUySzAzS
55 52 54 eqeltrd yFiny=KHLyAUySzAUyzS
56 55 exp43 yFiny=KHLyAUySzAUyzS
57 simplrl yFinyKHLyAUySzAKHL
58 1 2 pclssidN KHLyAyUy
59 58 ad2antlr yFinyKHLyAUySzAyUy
60 unss1 yUyyzUyz
61 59 60 syl yFinyKHLyAUySzAyzUyz
62 simprl yFinyKHLyAUySzAUyS
63 1 3 psubclssatN KHLUySUyA
64 57 62 63 syl2anc yFinyKHLyAUySzAUyA
65 snssi zAzA
66 65 ad2antll yFinyKHLyAUySzAzA
67 eqid +𝑃K=+𝑃K
68 1 67 paddunssN KHLUyAzAUyzUy+𝑃Kz
69 57 64 66 68 syl3anc yFinyKHLyAUySzAUyzUy+𝑃Kz
70 61 69 sstrd yFinyKHLyAUySzAyzUy+𝑃Kz
71 1 67 paddssat KHLUyAzAUy+𝑃KzA
72 57 64 66 71 syl3anc yFinyKHLyAUySzAUy+𝑃KzA
73 1 2 pclssN KHLyzUy+𝑃KzUy+𝑃KzAUyzUUy+𝑃Kz
74 57 70 72 73 syl3anc yFinyKHLyAUySzAUyzUUy+𝑃Kz
75 simprr yFinyKHLyAUySzAzA
76 1 67 3 paddatclN KHLUySzAUy+𝑃KzS
77 57 62 75 76 syl3anc yFinyKHLyAUySzAUy+𝑃KzS
78 47 3 psubclsubN KHLUy+𝑃KzSUy+𝑃KzPSubSpK
79 57 77 78 syl2anc yFinyKHLyAUySzAUy+𝑃KzPSubSpK
80 47 2 pclidN KHLUy+𝑃KzPSubSpKUUy+𝑃Kz=Uy+𝑃Kz
81 57 79 80 syl2anc yFinyKHLyAUySzAUUy+𝑃Kz=Uy+𝑃Kz
82 74 81 sseqtrd yFinyKHLyAUySzAUyzUy+𝑃Kz
83 57 hllatd yFinyKHLyAUySzAKLat
84 simpllr yFinyKHLyAUySzAy
85 1 2 pcl0bN KHLyAUy=y=
86 85 ad2antlr yFinyKHLyAUySzAUy=y=
87 86 necon3bid yFinyKHLyAUySzAUyy
88 84 87 mpbird yFinyKHLyAUySzAUy
89 eqid K=K
90 eqid joinK=joinK
91 89 90 1 67 elpaddat KLatUyAzAUyqUy+𝑃KzqApUyqKpjoinKz
92 83 64 75 88 91 syl31anc yFinyKHLyAUySzAqUy+𝑃KzqApUyqKpjoinKz
93 simp1rl yFinyKHLyAUySzAqAKHL
94 93 3ad2ant1 yFinyKHLyAUySzAqApUyqKpjoinKzKHL
95 94 adantr yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwKHL
96 simprl yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwwPSubSpK
97 simpl13 yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwqA
98 unss ywzwyzw
99 simpl ywzwyw
100 98 99 sylbir yzwyw
101 100 ad2antll yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwyw
102 simpl2 yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwpUy
103 47 2 elpcliN KHLywwPSubSpKpUypw
104 95 101 96 102 103 syl31anc yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwpw
105 29 snss zwzw
106 105 biimpri zwzw
107 106 adantl ywzwzw
108 98 107 sylbir yzwzw
109 108 ad2antll yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwzw
110 simpl3 yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwqKpjoinKz
111 89 90 1 47 psubspi2N KHLwPSubSpKqApwzwqKpjoinKzqw
112 95 96 97 104 109 110 111 syl33anc yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwqw
113 112 exp520 yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwqw
114 113 rexlimdv yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwqw
115 114 3expia yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwqw
116 115 impd yFinyKHLyAUySzAqApUyqKpjoinKzwPSubSpKyzwqw
117 92 116 sylbid yFinyKHLyAUySzAqUy+𝑃KzwPSubSpKyzwqw
118 117 ralrimdv yFinyKHLyAUySzAqUy+𝑃KzwPSubSpKyzwqw
119 simplrr yFinyKHLyAUySzAyA
120 119 75 jca yFinyKHLyAUySzAyAzA
121 120 33 sylib yFinyKHLyAUySzAyzA
122 vex qV
123 1 47 2 122 elpclN KHLyzAqUyzwPSubSpKyzwqw
124 57 121 123 syl2anc yFinyKHLyAUySzAqUyzwPSubSpKyzwqw
125 118 124 sylibrd yFinyKHLyAUySzAqUy+𝑃KzqUyz
126 125 ssrdv yFinyKHLyAUySzAUy+𝑃KzUyz
127 82 126 eqssd yFinyKHLyAUySzAUyz=Uy+𝑃Kz
128 127 77 eqeltrd yFinyKHLyAUySzAUyzS
129 128 exp43 yFinyKHLyAUySzAUyzS
130 56 129 pm2.61dane yFinKHLyAUySzAUyzS
131 130 a2d yFinKHLyAUySKHLyAzAUyzS
132 131 imp4b yFinKHLyAUySKHLyAzAUyzS
133 35 132 biimtrid yFinKHLyAUySKHLyzAUyzS
134 133 ex yFinKHLyAUySKHLyzAUyzS
135 8 13 18 23 27 134 findcard2 XFinKHLXAUXS
136 135 3impib XFinKHLXAUXS
137 136 3coml KHLXAXFinUXS