Metamath Proof Explorer


Theorem pi1xfr

Description: Given a path F and its inverse I between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses pi1xfr.p P=Jπ1F0
pi1xfr.q Q=Jπ1F1
pi1xfr.b B=BaseP
pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
pi1xfr.j φJTopOnX
pi1xfr.f φFIICnJ
pi1xfr.i I=x01F1x
Assertion pi1xfr φGPGrpHomQ

Proof

Step Hyp Ref Expression
1 pi1xfr.p P=Jπ1F0
2 pi1xfr.q Q=Jπ1F1
3 pi1xfr.b B=BaseP
4 pi1xfr.g G=rangBgphJI*𝑝Jg*𝑝JFphJ
5 pi1xfr.j φJTopOnX
6 pi1xfr.f φFIICnJ
7 pi1xfr.i I=x01F1x
8 iitopon IITopOn01
9 cnf2 IITopOn01JTopOnXFIICnJF:01X
10 8 5 6 9 mp3an2i φF:01X
11 0elunit 001
12 ffvelcdm F:01X001F0X
13 10 11 12 sylancl φF0X
14 1 pi1grp JTopOnXF0XPGrp
15 5 13 14 syl2anc φPGrp
16 1elunit 101
17 ffvelcdm F:01X101F1X
18 10 16 17 sylancl φF1X
19 2 pi1grp JTopOnXF1XQGrp
20 5 18 19 syl2anc φQGrp
21 7 pcorevcl FIICnJIIICnJI0=F1I1=F0
22 6 21 syl φIIICnJI0=F1I1=F0
23 22 simp1d φIIICnJ
24 22 simp2d φI0=F1
25 24 eqcomd φF1=I0
26 22 simp3d φI1=F0
27 1 2 3 4 5 6 23 25 26 pi1xfrf φG:BBaseQ
28 3 a1i φB=BaseP
29 1 5 13 28 pi1bas2 φB=B/phJ
30 29 eleq2d φyByB/phJ
31 30 biimpa φyByB/phJ
32 eqid B/phJ=B/phJ
33 fvoveq1 fphJ=yGfphJ+Pz=Gy+Pz
34 fveq2 fphJ=yGfphJ=Gy
35 34 oveq1d fphJ=yGfphJ+QGz=Gy+QGz
36 33 35 eqeq12d fphJ=yGfphJ+Pz=GfphJ+QGzGy+Pz=Gy+QGz
37 36 ralbidv fphJ=yzBGfphJ+Pz=GfphJ+QGzzBGy+Pz=Gy+QGz
38 29 eleq2d φzBzB/phJ
39 38 biimpa φzBzB/phJ
40 39 adantlr φfBzBzB/phJ
41 oveq2 hphJ=zfphJ+PhphJ=fphJ+Pz
42 41 fveq2d hphJ=zGfphJ+PhphJ=GfphJ+Pz
43 fveq2 hphJ=zGhphJ=Gz
44 43 oveq2d hphJ=zGfphJ+QGhphJ=GfphJ+QGz
45 42 44 eqeq12d hphJ=zGfphJ+PhphJ=GfphJ+QGhphJGfphJ+Pz=GfphJ+QGz
46 phtpcer phJErIICnJ
47 46 a1i φfBhBphJErIICnJ
48 1 5 13 28 pi1eluni φfBfIICnJf0=F0f1=F0
49 48 biimpa φfBfIICnJf0=F0f1=F0
50 49 simp1d φfBfIICnJ
51 50 3adant3 φfBhBfIICnJ
52 1 5 13 28 pi1eluni φhBhIICnJh0=F0h1=F0
53 52 adantr φfBhBhIICnJh0=F0h1=F0
54 53 biimp3a φfBhBhIICnJh0=F0h1=F0
55 54 simp1d φfBhBhIICnJ
56 51 55 pco0 φfBhBf*𝑝Jh0=f0
57 49 simp2d φfBf0=F0
58 57 3adant3 φfBhBf0=F0
59 56 58 eqtrd φfBhBf*𝑝Jh0=F0
60 49 simp3d φfBf1=F0
61 60 3adant3 φfBhBf1=F0
62 54 simp2d φfBhBh0=F0
63 61 62 eqtr4d φfBhBf1=h0
64 51 55 63 pcocn φfBhBf*𝑝JhIICnJ
65 6 3ad2ant1 φfBhBFIICnJ
66 64 65 pco0 φfBhBf*𝑝Jh*𝑝JF0=f*𝑝Jh0
67 26 3ad2ant1 φfBhBI1=F0
68 59 66 67 3eqtr4rd φfBhBI1=f*𝑝Jh*𝑝JF0
69 23 3ad2ant1 φfBhBIIICnJ
70 47 69 erref φfBhBIphJI
71 54 simp3d φfBhBh1=F0
72 eqid u01ifu12ifu142uu+14u2+12=u01ifu12ifu142uu+14u2+12
73 51 55 65 63 71 72 pcoass φfBhBf*𝑝Jh*𝑝JFphJf*𝑝Jh*𝑝JF
74 55 65 pco0 φfBhBh*𝑝JF0=h0
75 63 74 eqtr4d φfBhBf1=h*𝑝JF0
76 47 51 erref φfBhBfphJf
77 65 69 pco1 φfBhBF*𝑝JI1=I1
78 62 74 67 3eqtr4rd φfBhBI1=h*𝑝JF0
79 77 78 eqtrd φfBhBF*𝑝JI1=h*𝑝JF0
80 eqid 01×F0=01×F0
81 7 80 pcorev2 FIICnJF*𝑝JIphJ01×F0
82 65 81 syl φfBhBF*𝑝JIphJ01×F0
83 55 65 71 pcocn φfBhBh*𝑝JFIICnJ
84 47 83 erref φfBhBh*𝑝JFphJh*𝑝JF
85 79 82 84 pcohtpy φfBhBF*𝑝JI*𝑝Jh*𝑝JFphJ01×F0*𝑝Jh*𝑝JF
86 74 62 eqtrd φfBhBh*𝑝JF0=F0
87 80 pcopt h*𝑝JFIICnJh*𝑝JF0=F001×F0*𝑝Jh*𝑝JFphJh*𝑝JF
88 83 86 87 syl2anc φfBhB01×F0*𝑝Jh*𝑝JFphJh*𝑝JF
89 47 85 88 ertrd φfBhBF*𝑝JI*𝑝Jh*𝑝JFphJh*𝑝JF
90 24 3ad2ant1 φfBhBI0=F1
91 90 eqcomd φfBhBF1=I0
92 65 69 83 91 78 72 pcoass φfBhBF*𝑝JI*𝑝Jh*𝑝JFphJF*𝑝JI*𝑝Jh*𝑝JF
93 47 89 92 ertr3d φfBhBh*𝑝JFphJF*𝑝JI*𝑝Jh*𝑝JF
94 75 76 93 pcohtpy φfBhBf*𝑝Jh*𝑝JFphJf*𝑝JF*𝑝JI*𝑝Jh*𝑝JF
95 69 83 78 pcocn φfBhBI*𝑝Jh*𝑝JFIICnJ
96 69 83 pco0 φfBhBI*𝑝Jh*𝑝JF0=I0
97 96 90 eqtrd φfBhBI*𝑝Jh*𝑝JF0=F1
98 97 eqcomd φfBhBF1=I*𝑝Jh*𝑝JF0
99 51 65 95 61 98 72 pcoass φfBhBf*𝑝JF*𝑝JI*𝑝Jh*𝑝JFphJf*𝑝JF*𝑝JI*𝑝Jh*𝑝JF
100 47 94 99 ertr4d φfBhBf*𝑝Jh*𝑝JFphJf*𝑝JF*𝑝JI*𝑝Jh*𝑝JF
101 47 73 100 ertrd φfBhBf*𝑝Jh*𝑝JFphJf*𝑝JF*𝑝JI*𝑝Jh*𝑝JF
102 68 70 101 pcohtpy φfBhBI*𝑝Jf*𝑝Jh*𝑝JFphJI*𝑝Jf*𝑝JF*𝑝JI*𝑝Jh*𝑝JF
103 6 adantr φfBFIICnJ
104 50 103 60 pcocn φfBf*𝑝JFIICnJ
105 104 3adant3 φfBhBf*𝑝JFIICnJ
106 50 103 pco0 φfBf*𝑝JF0=f0
107 26 adantr φfBI1=F0
108 57 106 107 3eqtr4rd φfBI1=f*𝑝JF0
109 108 3adant3 φfBhBI1=f*𝑝JF0
110 51 65 pco1 φfBhBf*𝑝JF1=F1
111 110 97 eqtr4d φfBhBf*𝑝JF1=I*𝑝Jh*𝑝JF0
112 69 105 95 109 111 72 pcoass φfBhBI*𝑝Jf*𝑝JF*𝑝JI*𝑝Jh*𝑝JFphJI*𝑝Jf*𝑝JF*𝑝JI*𝑝Jh*𝑝JF
113 47 102 112 ertr4d φfBhBI*𝑝Jf*𝑝Jh*𝑝JFphJI*𝑝Jf*𝑝JF*𝑝JI*𝑝Jh*𝑝JF
114 47 113 erthi φfBhBI*𝑝Jf*𝑝Jh*𝑝JFphJ=I*𝑝Jf*𝑝JF*𝑝JI*𝑝Jh*𝑝JFphJ
115 5 3ad2ant1 φfBhBJTopOnX
116 51 55 pco1 φfBhBf*𝑝Jh1=h1
117 116 71 eqtrd φfBhBf*𝑝Jh1=F0
118 1 5 13 28 pi1eluni φf*𝑝JhBf*𝑝JhIICnJf*𝑝Jh0=F0f*𝑝Jh1=F0
119 118 3ad2ant1 φfBhBf*𝑝JhBf*𝑝JhIICnJf*𝑝Jh0=F0f*𝑝Jh1=F0
120 64 59 117 119 mpbir3and φfBhBf*𝑝JhB
121 1 2 3 4 115 65 69 91 67 120 pi1xfrval φfBhBGf*𝑝JhphJ=I*𝑝Jf*𝑝Jh*𝑝JFphJ
122 eqid BaseQ=BaseQ
123 18 3ad2ant1 φfBhBF1X
124 eqid +Q=+Q
125 23 adantr φfBIIICnJ
126 125 104 108 pcocn φfBI*𝑝Jf*𝑝JFIICnJ
127 126 3adant3 φfBhBI*𝑝Jf*𝑝JFIICnJ
128 125 104 pco0 φfBI*𝑝Jf*𝑝JF0=I0
129 24 adantr φfBI0=F1
130 128 129 eqtrd φfBI*𝑝Jf*𝑝JF0=F1
131 130 3adant3 φfBhBI*𝑝Jf*𝑝JF0=F1
132 125 104 pco1 φfBI*𝑝Jf*𝑝JF1=f*𝑝JF1
133 50 103 pco1 φfBf*𝑝JF1=F1
134 132 133 eqtrd φfBI*𝑝Jf*𝑝JF1=F1
135 134 3adant3 φfBhBI*𝑝Jf*𝑝JF1=F1
136 eqidd φfBhBBaseQ=BaseQ
137 2 115 123 136 pi1eluni φfBhBI*𝑝Jf*𝑝JFBaseQI*𝑝Jf*𝑝JFIICnJI*𝑝Jf*𝑝JF0=F1I*𝑝Jf*𝑝JF1=F1
138 127 131 135 137 mpbir3and φfBhBI*𝑝Jf*𝑝JFBaseQ
139 69 83 pco1 φfBhBI*𝑝Jh*𝑝JF1=h*𝑝JF1
140 55 65 pco1 φfBhBh*𝑝JF1=F1
141 139 140 eqtrd φfBhBI*𝑝Jh*𝑝JF1=F1
142 2 115 123 136 pi1eluni φfBhBI*𝑝Jh*𝑝JFBaseQI*𝑝Jh*𝑝JFIICnJI*𝑝Jh*𝑝JF0=F1I*𝑝Jh*𝑝JF1=F1
143 95 97 141 142 mpbir3and φfBhBI*𝑝Jh*𝑝JFBaseQ
144 2 122 115 123 124 138 143 pi1addval φfBhBI*𝑝Jf*𝑝JFphJ+QI*𝑝Jh*𝑝JFphJ=I*𝑝Jf*𝑝JF*𝑝JI*𝑝Jh*𝑝JFphJ
145 114 121 144 3eqtr4d φfBhBGf*𝑝JhphJ=I*𝑝Jf*𝑝JFphJ+QI*𝑝Jh*𝑝JFphJ
146 13 3ad2ant1 φfBhBF0X
147 eqid +P=+P
148 simp2 φfBhBfB
149 simp3 φfBhBhB
150 1 3 115 146 147 148 149 pi1addval φfBhBfphJ+PhphJ=f*𝑝JhphJ
151 150 fveq2d φfBhBGfphJ+PhphJ=Gf*𝑝JhphJ
152 5 adantr φfBJTopOnX
153 25 adantr φfBF1=I0
154 simpr φfBfB
155 1 2 3 4 152 103 125 153 107 154 pi1xfrval φfBGfphJ=I*𝑝Jf*𝑝JFphJ
156 155 3adant3 φfBhBGfphJ=I*𝑝Jf*𝑝JFphJ
157 1 2 3 4 115 65 69 91 67 149 pi1xfrval φfBhBGhphJ=I*𝑝Jh*𝑝JFphJ
158 156 157 oveq12d φfBhBGfphJ+QGhphJ=I*𝑝Jf*𝑝JFphJ+QI*𝑝Jh*𝑝JFphJ
159 145 151 158 3eqtr4d φfBhBGfphJ+PhphJ=GfphJ+QGhphJ
160 159 3expa φfBhBGfphJ+PhphJ=GfphJ+QGhphJ
161 32 45 160 ectocld φfBzB/phJGfphJ+Pz=GfphJ+QGz
162 40 161 syldan φfBzBGfphJ+Pz=GfphJ+QGz
163 162 ralrimiva φfBzBGfphJ+Pz=GfphJ+QGz
164 32 37 163 ectocld φyB/phJzBGy+Pz=Gy+QGz
165 31 164 syldan φyBzBGy+Pz=Gy+QGz
166 165 ralrimiva φyBzBGy+Pz=Gy+QGz
167 27 166 jca φG:BBaseQyBzBGy+Pz=Gy+QGz
168 3 122 147 124 isghm GPGrpHomQPGrpQGrpG:BBaseQyBzBGy+Pz=Gy+QGz
169 15 20 167 168 syl21anbrc φGPGrpHomQ