Metamath Proof Explorer


Theorem ply1mulgsum

Description: The product of two polynomials expressed as group sum of scaled monomials. (Contributed by AV, 20-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p P = Poly 1 R
ply1mulgsum.b B = Base P
ply1mulgsum.a A = coe 1 K
ply1mulgsum.c C = coe 1 L
ply1mulgsum.x X = var 1 R
ply1mulgsum.pm × ˙ = P
ply1mulgsum.sm · ˙ = P
ply1mulgsum.rm ˙ = R
ply1mulgsum.m M = mulGrp P
ply1mulgsum.e × ˙ = M
Assertion ply1mulgsum R Ring K B L B K × ˙ L = P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p P = Poly 1 R
2 ply1mulgsum.b B = Base P
3 ply1mulgsum.a A = coe 1 K
4 ply1mulgsum.c C = coe 1 L
5 ply1mulgsum.x X = var 1 R
6 ply1mulgsum.pm × ˙ = P
7 ply1mulgsum.sm · ˙ = P
8 ply1mulgsum.rm ˙ = R
9 ply1mulgsum.m M = mulGrp P
10 ply1mulgsum.e × ˙ = M
11 1 6 8 2 coe1mul R Ring K B L B coe 1 K × ˙ L = m 0 R i = 0 m coe 1 K i ˙ coe 1 L m i
12 11 adantr R Ring K B L B n 0 coe 1 K × ˙ L = m 0 R i = 0 m coe 1 K i ˙ coe 1 L m i
13 12 fveq1d R Ring K B L B n 0 coe 1 K × ˙ L n = m 0 R i = 0 m coe 1 K i ˙ coe 1 L m i n
14 eqidd R Ring K B L B n 0 m 0 R i = 0 m coe 1 K i ˙ coe 1 L m i = m 0 R i = 0 m coe 1 K i ˙ coe 1 L m i
15 oveq2 m = n 0 m = 0 n
16 fvoveq1 m = n coe 1 L m i = coe 1 L n i
17 16 oveq2d m = n coe 1 K i ˙ coe 1 L m i = coe 1 K i ˙ coe 1 L n i
18 15 17 mpteq12dv m = n i 0 m coe 1 K i ˙ coe 1 L m i = i 0 n coe 1 K i ˙ coe 1 L n i
19 18 oveq2d m = n R i = 0 m coe 1 K i ˙ coe 1 L m i = R i = 0 n coe 1 K i ˙ coe 1 L n i
20 19 adantl R Ring K B L B n 0 m = n R i = 0 m coe 1 K i ˙ coe 1 L m i = R i = 0 n coe 1 K i ˙ coe 1 L n i
21 simpr R Ring K B L B n 0 n 0
22 ovexd R Ring K B L B n 0 R i = 0 n coe 1 K i ˙ coe 1 L n i V
23 14 20 21 22 fvmptd R Ring K B L B n 0 m 0 R i = 0 m coe 1 K i ˙ coe 1 L m i n = R i = 0 n coe 1 K i ˙ coe 1 L n i
24 9 fveq2i M = mulGrp P
25 10 24 eqtri × ˙ = mulGrp P
26 simp1 R Ring K B L B R Ring
27 26 adantr R Ring K B L B n 0 R Ring
28 eqid Base R = Base R
29 eqid 0 R = 0 R
30 ringcmn R Ring R CMnd
31 30 3ad2ant1 R Ring K B L B R CMnd
32 31 ad2antrr R Ring K B L B n 0 k 0 R CMnd
33 fzfid R Ring K B L B n 0 k 0 0 k Fin
34 simpll1 R Ring K B L B n 0 k 0 R Ring
35 34 adantr R Ring K B L B n 0 k 0 l 0 k R Ring
36 simp2 R Ring K B L B K B
37 36 ad2antrr R Ring K B L B n 0 k 0 K B
38 elfznn0 l 0 k l 0
39 3 2 1 28 coe1fvalcl K B l 0 A l Base R
40 37 38 39 syl2an R Ring K B L B n 0 k 0 l 0 k A l Base R
41 simp3 R Ring K B L B L B
42 41 ad2antrr R Ring K B L B n 0 k 0 L B
43 fznn0sub l 0 k k l 0
44 4 2 1 28 coe1fvalcl L B k l 0 C k l Base R
45 42 43 44 syl2an R Ring K B L B n 0 k 0 l 0 k C k l Base R
46 28 8 ringcl R Ring A l Base R C k l Base R A l ˙ C k l Base R
47 35 40 45 46 syl3anc R Ring K B L B n 0 k 0 l 0 k A l ˙ C k l Base R
48 47 ralrimiva R Ring K B L B n 0 k 0 l 0 k A l ˙ C k l Base R
49 28 32 33 48 gsummptcl R Ring K B L B n 0 k 0 R l = 0 k A l ˙ C k l Base R
50 49 ralrimiva R Ring K B L B n 0 k 0 R l = 0 k A l ˙ C k l Base R
51 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem3 R Ring K B L B finSupp 0 R k 0 R l = 0 k A l ˙ C k l
52 51 adantr R Ring K B L B n 0 finSupp 0 R k 0 R l = 0 k A l ˙ C k l
53 1 2 5 25 27 28 7 29 50 52 21 gsummoncoe1 R Ring K B L B n 0 coe 1 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X n = n / k R l = 0 k A l ˙ C k l
54 vex n V
55 csbov2g n V n / k R l = 0 k A l ˙ C k l = R n / k l 0 k A l ˙ C k l
56 id n V n V
57 oveq2 k = n 0 k = 0 n
58 fvoveq1 k = n C k l = C n l
59 58 oveq2d k = n A l ˙ C k l = A l ˙ C n l
60 57 59 mpteq12dv k = n l 0 k A l ˙ C k l = l 0 n A l ˙ C n l
61 60 adantl n V k = n l 0 k A l ˙ C k l = l 0 n A l ˙ C n l
62 56 61 csbied n V n / k l 0 k A l ˙ C k l = l 0 n A l ˙ C n l
63 62 oveq2d n V R n / k l 0 k A l ˙ C k l = R l = 0 n A l ˙ C n l
64 55 63 eqtrd n V n / k R l = 0 k A l ˙ C k l = R l = 0 n A l ˙ C n l
65 54 64 mp1i R Ring K B L B n 0 n / k R l = 0 k A l ˙ C k l = R l = 0 n A l ˙ C n l
66 fveq2 l = i A l = A i
67 3 fveq1i A i = coe 1 K i
68 66 67 eqtrdi l = i A l = coe 1 K i
69 oveq2 l = i n l = n i
70 69 fveq2d l = i C n l = C n i
71 4 fveq1i C n i = coe 1 L n i
72 70 71 eqtrdi l = i C n l = coe 1 L n i
73 68 72 oveq12d l = i A l ˙ C n l = coe 1 K i ˙ coe 1 L n i
74 73 cbvmptv l 0 n A l ˙ C n l = i 0 n coe 1 K i ˙ coe 1 L n i
75 74 a1i R Ring K B L B n 0 l 0 n A l ˙ C n l = i 0 n coe 1 K i ˙ coe 1 L n i
76 75 oveq2d R Ring K B L B n 0 R l = 0 n A l ˙ C n l = R i = 0 n coe 1 K i ˙ coe 1 L n i
77 53 65 76 3eqtrrd R Ring K B L B n 0 R i = 0 n coe 1 K i ˙ coe 1 L n i = coe 1 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X n
78 13 23 77 3eqtrd R Ring K B L B n 0 coe 1 K × ˙ L n = coe 1 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X n
79 78 ralrimiva R Ring K B L B n 0 coe 1 K × ˙ L n = coe 1 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X n
80 1 ply1ring R Ring P Ring
81 2 6 ringcl P Ring K B L B K × ˙ L B
82 80 81 syl3an1 R Ring K B L B K × ˙ L B
83 eqid 0 P = 0 P
84 ringcmn P Ring P CMnd
85 80 84 syl R Ring P CMnd
86 85 3ad2ant1 R Ring K B L B P CMnd
87 nn0ex 0 V
88 87 a1i R Ring K B L B 0 V
89 1 ply1lmod R Ring P LMod
90 89 3ad2ant1 R Ring K B L B P LMod
91 90 adantr R Ring K B L B k 0 P LMod
92 31 adantr R Ring K B L B k 0 R CMnd
93 fzfid R Ring K B L B k 0 0 k Fin
94 simpll1 R Ring K B L B k 0 l 0 k R Ring
95 36 adantr R Ring K B L B k 0 K B
96 95 38 39 syl2an R Ring K B L B k 0 l 0 k A l Base R
97 41 adantr R Ring K B L B k 0 L B
98 97 43 44 syl2an R Ring K B L B k 0 l 0 k C k l Base R
99 94 96 98 46 syl3anc R Ring K B L B k 0 l 0 k A l ˙ C k l Base R
100 99 ralrimiva R Ring K B L B k 0 l 0 k A l ˙ C k l Base R
101 28 92 93 100 gsummptcl R Ring K B L B k 0 R l = 0 k A l ˙ C k l Base R
102 26 adantr R Ring K B L B k 0 R Ring
103 1 ply1sca R Ring R = Scalar P
104 102 103 syl R Ring K B L B k 0 R = Scalar P
105 104 fveq2d R Ring K B L B k 0 Base R = Base Scalar P
106 101 105 eleqtrd R Ring K B L B k 0 R l = 0 k A l ˙ C k l Base Scalar P
107 9 ringmgp P Ring M Mnd
108 80 107 syl R Ring M Mnd
109 108 3ad2ant1 R Ring K B L B M Mnd
110 109 adantr R Ring K B L B k 0 M Mnd
111 simpr R Ring K B L B k 0 k 0
112 5 1 2 vr1cl R Ring X B
113 112 3ad2ant1 R Ring K B L B X B
114 113 adantr R Ring K B L B k 0 X B
115 9 2 mgpbas B = Base M
116 115 10 mulgnn0cl M Mnd k 0 X B k × ˙ X B
117 110 111 114 116 syl3anc R Ring K B L B k 0 k × ˙ X B
118 eqid Scalar P = Scalar P
119 eqid Base Scalar P = Base Scalar P
120 2 118 7 119 lmodvscl P LMod R l = 0 k A l ˙ C k l Base Scalar P k × ˙ X B R l = 0 k A l ˙ C k l · ˙ k × ˙ X B
121 91 106 117 120 syl3anc R Ring K B L B k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X B
122 121 fmpttd R Ring K B L B k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X : 0 B
123 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem4 R Ring K B L B finSupp 0 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X
124 2 83 86 88 122 123 gsumcl R Ring K B L B P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X B
125 eqid coe 1 K × ˙ L = coe 1 K × ˙ L
126 eqid coe 1 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X = coe 1 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X
127 1 2 125 126 ply1coe1eq R Ring K × ˙ L B P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X B n 0 coe 1 K × ˙ L n = coe 1 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X n K × ˙ L = P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X
128 26 82 124 127 syl3anc R Ring K B L B n 0 coe 1 K × ˙ L n = coe 1 P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X n K × ˙ L = P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X
129 79 128 mpbid R Ring K B L B K × ˙ L = P k 0 R l = 0 k A l ˙ C k l · ˙ k × ˙ X