Metamath Proof Explorer


Theorem ply1mulgsum

Description: The product of two polynomials expressed as group sum of scaled monomials. (Contributed by AV, 20-Oct-2019)

Ref Expression
Hypotheses ply1mulgsum.p P=Poly1R
ply1mulgsum.b B=BaseP
ply1mulgsum.a A=coe1K
ply1mulgsum.c C=coe1L
ply1mulgsum.x X=var1R
ply1mulgsum.pm ×˙=P
ply1mulgsum.sm ·˙=P
ply1mulgsum.rm ˙=R
ply1mulgsum.m M=mulGrpP
ply1mulgsum.e ×˙=M
Assertion ply1mulgsum RRingKBLBK×˙L=Pk0Rl=0kAl˙Ckl·˙k×˙X

Proof

Step Hyp Ref Expression
1 ply1mulgsum.p P=Poly1R
2 ply1mulgsum.b B=BaseP
3 ply1mulgsum.a A=coe1K
4 ply1mulgsum.c C=coe1L
5 ply1mulgsum.x X=var1R
6 ply1mulgsum.pm ×˙=P
7 ply1mulgsum.sm ·˙=P
8 ply1mulgsum.rm ˙=R
9 ply1mulgsum.m M=mulGrpP
10 ply1mulgsum.e ×˙=M
11 1 6 8 2 coe1mul RRingKBLBcoe1K×˙L=m0Ri=0mcoe1Ki˙coe1Lmi
12 11 adantr RRingKBLBn0coe1K×˙L=m0Ri=0mcoe1Ki˙coe1Lmi
13 12 fveq1d RRingKBLBn0coe1K×˙Ln=m0Ri=0mcoe1Ki˙coe1Lmin
14 eqidd RRingKBLBn0m0Ri=0mcoe1Ki˙coe1Lmi=m0Ri=0mcoe1Ki˙coe1Lmi
15 oveq2 m=n0m=0n
16 fvoveq1 m=ncoe1Lmi=coe1Lni
17 16 oveq2d m=ncoe1Ki˙coe1Lmi=coe1Ki˙coe1Lni
18 15 17 mpteq12dv m=ni0mcoe1Ki˙coe1Lmi=i0ncoe1Ki˙coe1Lni
19 18 oveq2d m=nRi=0mcoe1Ki˙coe1Lmi=Ri=0ncoe1Ki˙coe1Lni
20 19 adantl RRingKBLBn0m=nRi=0mcoe1Ki˙coe1Lmi=Ri=0ncoe1Ki˙coe1Lni
21 simpr RRingKBLBn0n0
22 ovexd RRingKBLBn0Ri=0ncoe1Ki˙coe1LniV
23 14 20 21 22 fvmptd RRingKBLBn0m0Ri=0mcoe1Ki˙coe1Lmin=Ri=0ncoe1Ki˙coe1Lni
24 9 fveq2i M=mulGrpP
25 10 24 eqtri ×˙=mulGrpP
26 simp1 RRingKBLBRRing
27 26 adantr RRingKBLBn0RRing
28 eqid BaseR=BaseR
29 eqid 0R=0R
30 ringcmn RRingRCMnd
31 30 3ad2ant1 RRingKBLBRCMnd
32 31 ad2antrr RRingKBLBn0k0RCMnd
33 fzfid RRingKBLBn0k00kFin
34 simpll1 RRingKBLBn0k0RRing
35 34 adantr RRingKBLBn0k0l0kRRing
36 simp2 RRingKBLBKB
37 36 ad2antrr RRingKBLBn0k0KB
38 elfznn0 l0kl0
39 3 2 1 28 coe1fvalcl KBl0AlBaseR
40 37 38 39 syl2an RRingKBLBn0k0l0kAlBaseR
41 simp3 RRingKBLBLB
42 41 ad2antrr RRingKBLBn0k0LB
43 fznn0sub l0kkl0
44 4 2 1 28 coe1fvalcl LBkl0CklBaseR
45 42 43 44 syl2an RRingKBLBn0k0l0kCklBaseR
46 28 8 ringcl RRingAlBaseRCklBaseRAl˙CklBaseR
47 35 40 45 46 syl3anc RRingKBLBn0k0l0kAl˙CklBaseR
48 47 ralrimiva RRingKBLBn0k0l0kAl˙CklBaseR
49 28 32 33 48 gsummptcl RRingKBLBn0k0Rl=0kAl˙CklBaseR
50 49 ralrimiva RRingKBLBn0k0Rl=0kAl˙CklBaseR
51 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem3 RRingKBLBfinSupp0Rk0Rl=0kAl˙Ckl
52 51 adantr RRingKBLBn0finSupp0Rk0Rl=0kAl˙Ckl
53 1 2 5 25 27 28 7 29 50 52 21 gsummoncoe1 RRingKBLBn0coe1Pk0Rl=0kAl˙Ckl·˙k×˙Xn=n/kRl=0kAl˙Ckl
54 vex nV
55 csbov2g nVn/kRl=0kAl˙Ckl=Rn/kl0kAl˙Ckl
56 id nVnV
57 oveq2 k=n0k=0n
58 fvoveq1 k=nCkl=Cnl
59 58 oveq2d k=nAl˙Ckl=Al˙Cnl
60 57 59 mpteq12dv k=nl0kAl˙Ckl=l0nAl˙Cnl
61 60 adantl nVk=nl0kAl˙Ckl=l0nAl˙Cnl
62 56 61 csbied nVn/kl0kAl˙Ckl=l0nAl˙Cnl
63 62 oveq2d nVRn/kl0kAl˙Ckl=Rl=0nAl˙Cnl
64 55 63 eqtrd nVn/kRl=0kAl˙Ckl=Rl=0nAl˙Cnl
65 54 64 mp1i RRingKBLBn0n/kRl=0kAl˙Ckl=Rl=0nAl˙Cnl
66 fveq2 l=iAl=Ai
67 3 fveq1i Ai=coe1Ki
68 66 67 eqtrdi l=iAl=coe1Ki
69 oveq2 l=inl=ni
70 69 fveq2d l=iCnl=Cni
71 4 fveq1i Cni=coe1Lni
72 70 71 eqtrdi l=iCnl=coe1Lni
73 68 72 oveq12d l=iAl˙Cnl=coe1Ki˙coe1Lni
74 73 cbvmptv l0nAl˙Cnl=i0ncoe1Ki˙coe1Lni
75 74 a1i RRingKBLBn0l0nAl˙Cnl=i0ncoe1Ki˙coe1Lni
76 75 oveq2d RRingKBLBn0Rl=0nAl˙Cnl=Ri=0ncoe1Ki˙coe1Lni
77 53 65 76 3eqtrrd RRingKBLBn0Ri=0ncoe1Ki˙coe1Lni=coe1Pk0Rl=0kAl˙Ckl·˙k×˙Xn
78 13 23 77 3eqtrd RRingKBLBn0coe1K×˙Ln=coe1Pk0Rl=0kAl˙Ckl·˙k×˙Xn
79 78 ralrimiva RRingKBLBn0coe1K×˙Ln=coe1Pk0Rl=0kAl˙Ckl·˙k×˙Xn
80 1 ply1ring RRingPRing
81 2 6 ringcl PRingKBLBK×˙LB
82 80 81 syl3an1 RRingKBLBK×˙LB
83 eqid 0P=0P
84 ringcmn PRingPCMnd
85 80 84 syl RRingPCMnd
86 85 3ad2ant1 RRingKBLBPCMnd
87 nn0ex 0V
88 87 a1i RRingKBLB0V
89 1 ply1lmod RRingPLMod
90 89 3ad2ant1 RRingKBLBPLMod
91 90 adantr RRingKBLBk0PLMod
92 31 adantr RRingKBLBk0RCMnd
93 fzfid RRingKBLBk00kFin
94 simpll1 RRingKBLBk0l0kRRing
95 36 adantr RRingKBLBk0KB
96 95 38 39 syl2an RRingKBLBk0l0kAlBaseR
97 41 adantr RRingKBLBk0LB
98 97 43 44 syl2an RRingKBLBk0l0kCklBaseR
99 94 96 98 46 syl3anc RRingKBLBk0l0kAl˙CklBaseR
100 99 ralrimiva RRingKBLBk0l0kAl˙CklBaseR
101 28 92 93 100 gsummptcl RRingKBLBk0Rl=0kAl˙CklBaseR
102 26 adantr RRingKBLBk0RRing
103 1 ply1sca RRingR=ScalarP
104 102 103 syl RRingKBLBk0R=ScalarP
105 104 fveq2d RRingKBLBk0BaseR=BaseScalarP
106 101 105 eleqtrd RRingKBLBk0Rl=0kAl˙CklBaseScalarP
107 9 2 mgpbas B=BaseM
108 9 ringmgp PRingMMnd
109 80 108 syl RRingMMnd
110 109 3ad2ant1 RRingKBLBMMnd
111 110 adantr RRingKBLBk0MMnd
112 simpr RRingKBLBk0k0
113 5 1 2 vr1cl RRingXB
114 113 3ad2ant1 RRingKBLBXB
115 114 adantr RRingKBLBk0XB
116 107 10 111 112 115 mulgnn0cld RRingKBLBk0k×˙XB
117 eqid ScalarP=ScalarP
118 eqid BaseScalarP=BaseScalarP
119 2 117 7 118 lmodvscl PLModRl=0kAl˙CklBaseScalarPk×˙XBRl=0kAl˙Ckl·˙k×˙XB
120 91 106 116 119 syl3anc RRingKBLBk0Rl=0kAl˙Ckl·˙k×˙XB
121 120 fmpttd RRingKBLBk0Rl=0kAl˙Ckl·˙k×˙X:0B
122 1 2 3 4 5 6 7 8 9 10 ply1mulgsumlem4 RRingKBLBfinSupp0Pk0Rl=0kAl˙Ckl·˙k×˙X
123 2 83 86 88 121 122 gsumcl RRingKBLBPk0Rl=0kAl˙Ckl·˙k×˙XB
124 eqid coe1K×˙L=coe1K×˙L
125 eqid coe1Pk0Rl=0kAl˙Ckl·˙k×˙X=coe1Pk0Rl=0kAl˙Ckl·˙k×˙X
126 1 2 124 125 ply1coe1eq RRingK×˙LBPk0Rl=0kAl˙Ckl·˙k×˙XBn0coe1K×˙Ln=coe1Pk0Rl=0kAl˙Ckl·˙k×˙XnK×˙L=Pk0Rl=0kAl˙Ckl·˙k×˙X
127 26 82 123 126 syl3anc RRingKBLBn0coe1K×˙Ln=coe1Pk0Rl=0kAl˙Ckl·˙k×˙XnK×˙L=Pk0Rl=0kAl˙Ckl·˙k×˙X
128 79 127 mpbid RRingKBLBK×˙L=Pk0Rl=0kAl˙Ckl·˙k×˙X