| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmapjat.b |  | 
						
							| 2 |  | pmapjat.j |  | 
						
							| 3 |  | pmapjat.a |  | 
						
							| 4 |  | pmapjat.m |  | 
						
							| 5 |  | pmapjat.p |  | 
						
							| 6 |  | simp1 |  | 
						
							| 7 | 1 3 | atbase |  | 
						
							| 8 | 7 | 3ad2ant3 |  | 
						
							| 9 | 1 3 4 | pmapssat |  | 
						
							| 10 | 6 8 9 | syl2anc |  | 
						
							| 11 | 3 5 | padd02 |  | 
						
							| 12 | 6 10 11 | syl2anc |  | 
						
							| 13 | 12 | adantr |  | 
						
							| 14 |  | fveq2 |  | 
						
							| 15 |  | hlatl |  | 
						
							| 16 | 15 | 3ad2ant1 |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 17 4 | pmap0 |  | 
						
							| 19 | 16 18 | syl |  | 
						
							| 20 | 14 19 | sylan9eqr |  | 
						
							| 21 | 20 | oveq1d |  | 
						
							| 22 |  | oveq1 |  | 
						
							| 23 |  | hlol |  | 
						
							| 24 | 23 | 3ad2ant1 |  | 
						
							| 25 | 1 2 17 | olj02 |  | 
						
							| 26 | 24 8 25 | syl2anc |  | 
						
							| 27 | 22 26 | sylan9eqr |  | 
						
							| 28 | 27 | fveq2d |  | 
						
							| 29 | 13 21 28 | 3eqtr4rd |  | 
						
							| 30 |  | simpll1 |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | simpll2 |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | simplr |  | 
						
							| 35 |  | simpll3 |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 33 34 36 | 3jca |  | 
						
							| 38 |  | simpllr |  | 
						
							| 39 |  | simpr |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 1 40 2 17 3 | cvrat42 |  | 
						
							| 42 | 41 | imp |  | 
						
							| 43 | 31 37 38 39 42 | syl22anc |  | 
						
							| 44 | 43 | ex |  | 
						
							| 45 | 1 40 3 4 | elpmap |  | 
						
							| 46 | 45 | 3adant3 |  | 
						
							| 47 |  | df-rex |  | 
						
							| 48 | 3 4 | elpmapat |  | 
						
							| 49 | 48 | 3adant2 |  | 
						
							| 50 | 49 | anbi1d |  | 
						
							| 51 | 50 | exbidv |  | 
						
							| 52 | 47 51 | bitr2id |  | 
						
							| 53 |  | oveq2 |  | 
						
							| 54 | 53 | breq2d |  | 
						
							| 55 | 54 | ceqsexgv |  | 
						
							| 56 | 55 | 3ad2ant3 |  | 
						
							| 57 | 52 56 | bitr3d |  | 
						
							| 58 | 46 57 | anbi12d |  | 
						
							| 59 |  | anass |  | 
						
							| 60 | 58 59 | bitrdi |  | 
						
							| 61 | 60 | rexbidv2 |  | 
						
							| 62 | 61 | ad2antrr |  | 
						
							| 63 | 44 62 | sylibrd |  | 
						
							| 64 | 63 | imdistanda |  | 
						
							| 65 |  | hllat |  | 
						
							| 66 | 65 | 3ad2ant1 |  | 
						
							| 67 |  | simp2 |  | 
						
							| 68 | 1 2 | latjcl |  | 
						
							| 69 | 66 67 8 68 | syl3anc |  | 
						
							| 70 | 1 40 3 4 | elpmap |  | 
						
							| 71 | 6 69 70 | syl2anc |  | 
						
							| 72 | 71 | adantr |  | 
						
							| 73 | 1 3 4 | pmapssat |  | 
						
							| 74 | 73 | 3adant3 |  | 
						
							| 75 | 66 74 10 | 3jca |  | 
						
							| 76 | 75 | adantr |  | 
						
							| 77 | 1 17 4 | pmapeq0 |  | 
						
							| 78 | 77 | 3adant3 |  | 
						
							| 79 | 78 | necon3bid |  | 
						
							| 80 | 79 | biimpar |  | 
						
							| 81 |  | simp3 |  | 
						
							| 82 | 17 3 | atn0 |  | 
						
							| 83 | 16 81 82 | syl2anc |  | 
						
							| 84 | 1 17 4 | pmapeq0 |  | 
						
							| 85 | 6 8 84 | syl2anc |  | 
						
							| 86 | 85 | necon3bid |  | 
						
							| 87 | 83 86 | mpbird |  | 
						
							| 88 | 87 | adantr |  | 
						
							| 89 | 40 2 3 5 | elpaddn0 |  | 
						
							| 90 | 76 80 88 89 | syl12anc |  | 
						
							| 91 | 64 72 90 | 3imtr4d |  | 
						
							| 92 | 91 | ssrdv |  | 
						
							| 93 | 1 2 4 5 | pmapjoin |  | 
						
							| 94 | 66 67 8 93 | syl3anc |  | 
						
							| 95 | 94 | adantr |  | 
						
							| 96 | 92 95 | eqssd |  | 
						
							| 97 | 29 96 | pm2.61dane |  |