Metamath Proof Explorer


Theorem prdsbnd2

Description: If balls are totally bounded in each factor, then balls are bounded in a metric product. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses prdsbnd.y Y=S𝑠R
prdsbnd.b B=BaseY
prdsbnd.v V=BaseRx
prdsbnd.e E=distRxV×V
prdsbnd.d D=distY
prdsbnd.s φSW
prdsbnd.i φIFin
prdsbnd.r φRFnI
prdsbnd2.c C=DA×A
prdsbnd2.e φxIEMetV
prdsbnd2.m φxIEy×yTotBndyEy×yBndy
Assertion prdsbnd2 φCTotBndACBndA

Proof

Step Hyp Ref Expression
1 prdsbnd.y Y=S𝑠R
2 prdsbnd.b B=BaseY
3 prdsbnd.v V=BaseRx
4 prdsbnd.e E=distRxV×V
5 prdsbnd.d D=distY
6 prdsbnd.s φSW
7 prdsbnd.i φIFin
8 prdsbnd.r φRFnI
9 prdsbnd2.c C=DA×A
10 prdsbnd2.e φxIEMetV
11 prdsbnd2.m φxIEy×yTotBndyEy×yBndy
12 totbndbnd CTotBndACBndA
13 bndmet CBndACMetA
14 0totbnd A=CTotBndACMetA
15 13 14 imbitrrid A=CBndACTotBndA
16 15 a1i φA=CBndACTotBndA
17 n0 AaaA
18 simprr φaACBndACBndA
19 eqid S𝑠xIRx=S𝑠xIRx
20 eqid BaseS𝑠xIRx=BaseS𝑠xIRx
21 eqid distS𝑠xIRx=distS𝑠xIRx
22 fvexd φxIRxV
23 19 20 3 4 21 6 7 22 10 prdsmet φdistS𝑠xIRxMetBaseS𝑠xIRx
24 dffn5 RFnIR=xIRx
25 8 24 sylib φR=xIRx
26 25 oveq2d φS𝑠R=S𝑠xIRx
27 1 26 eqtrid φY=S𝑠xIRx
28 27 fveq2d φdistY=distS𝑠xIRx
29 5 28 eqtrid φD=distS𝑠xIRx
30 27 fveq2d φBaseY=BaseS𝑠xIRx
31 2 30 eqtrid φB=BaseS𝑠xIRx
32 31 fveq2d φMetB=MetBaseS𝑠xIRx
33 23 29 32 3eltr4d φDMetB
34 33 adantr φaACBndADMetB
35 simpr aACBndACBndA
36 9 bnd2lem DMetBCBndAAB
37 33 35 36 syl2an φaACBndAAB
38 simprl φaACBndAaA
39 37 38 sseldd φaACBndAaB
40 9 ssbnd DMetBaBCBndArAaballDr
41 34 39 40 syl2anc φaACBndACBndArAaballDr
42 18 41 mpbid φaACBndArAaballDr
43 simprr φaACBndArAaballDrAaballDr
44 xpss12 AaballDrAaballDrA×AaballDr×aballDr
45 43 43 44 syl2anc φaACBndArAaballDrA×AaballDr×aballDr
46 45 resabs1d φaACBndArAaballDrDaballDr×aballDrA×A=DA×A
47 46 9 eqtr4di φaACBndArAaballDrDaballDr×aballDrA×A=C
48 simpll φaACBndArAaballDrφ
49 39 adantr φaACBndArAaballDraB
50 simprl φaACBndArAaballDrr
51 38 adantr φaACBndArAaballDraA
52 43 51 sseldd φaACBndArAaballDraaballDr
53 52 ne0d φaACBndArAaballDraballDr
54 33 ad2antrr φaACBndArAaballDrDMetB
55 metxmet DMetBD∞MetB
56 54 55 syl φaACBndArAaballDrD∞MetB
57 50 rexrd φaACBndArAaballDrr*
58 xbln0 D∞MetBaBr*aballDr0<r
59 56 49 57 58 syl3anc φaACBndArAaballDraballDr0<r
60 53 59 mpbid φaACBndArAaballDr0<r
61 50 60 elrpd φaACBndArAaballDrr+
62 eqid S𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=S𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr
63 eqid BaseS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=BaseS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr
64 eqid BaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx=BaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx
65 eqid distyIRy𝑠ayballdistRyBaseRy×BaseRyrxBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx×BaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx=distyIRy𝑠ayballdistRyBaseRy×BaseRyrxBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx×BaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx
66 eqid distS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=distS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr
67 6 adantr φaBr+SW
68 7 adantr φaBr+IFin
69 ovex Rx𝑠axballErV
70 fveq2 y=xRy=Rx
71 2fveq3 y=xdistRy=distRx
72 2fveq3 y=xBaseRy=BaseRx
73 72 3 eqtr4di y=xBaseRy=V
74 73 sqxpeqd y=xBaseRy×BaseRy=V×V
75 71 74 reseq12d y=xdistRyBaseRy×BaseRy=distRxV×V
76 75 4 eqtr4di y=xdistRyBaseRy×BaseRy=E
77 76 fveq2d y=xballdistRyBaseRy×BaseRy=ballE
78 fveq2 y=xay=ax
79 eqidd y=xr=r
80 77 78 79 oveq123d y=xayballdistRyBaseRy×BaseRyr=axballEr
81 70 80 oveq12d y=xRy𝑠ayballdistRyBaseRy×BaseRyr=Rx𝑠axballEr
82 81 cbvmptv yIRy𝑠ayballdistRyBaseRy×BaseRyr=xIRx𝑠axballEr
83 69 82 fnmpti yIRy𝑠ayballdistRyBaseRy×BaseRyrFnI
84 83 a1i φaBr+yIRy𝑠ayballdistRyBaseRy×BaseRyrFnI
85 10 adantlr φaBr+xIEMetV
86 metxmet EMetVE∞MetV
87 85 86 syl φaBr+xIE∞MetV
88 22 ralrimiva φxIRxV
89 88 adantr φaBr+xIRxV
90 simprl φaBr+aB
91 31 adantr φaBr+B=BaseS𝑠xIRx
92 90 91 eleqtrd φaBr+aBaseS𝑠xIRx
93 19 20 67 68 89 3 92 prdsbascl φaBr+xIaxV
94 93 r19.21bi φaBr+xIaxV
95 simplrr φaBr+xIr+
96 95 rpred φaBr+xIr
97 blbnd E∞MetVaxVrEaxballEr×axballErBndaxballEr
98 87 94 96 97 syl3anc φaBr+xIEaxballEr×axballErBndaxballEr
99 ovex axballErV
100 xpeq12 y=axballEry=axballEry×y=axballEr×axballEr
101 100 anidms y=axballEry×y=axballEr×axballEr
102 101 reseq2d y=axballErEy×y=EaxballEr×axballEr
103 fveq2 y=axballErTotBndy=TotBndaxballEr
104 102 103 eleq12d y=axballErEy×yTotBndyEaxballEr×axballErTotBndaxballEr
105 fveq2 y=axballErBndy=BndaxballEr
106 102 105 eleq12d y=axballErEy×yBndyEaxballEr×axballErBndaxballEr
107 104 106 bibi12d y=axballErEy×yTotBndyEy×yBndyEaxballEr×axballErTotBndaxballErEaxballEr×axballErBndaxballEr
108 107 imbi2d y=axballErφxIEy×yTotBndyEy×yBndyφxIEaxballEr×axballErTotBndaxballErEaxballEr×axballErBndaxballEr
109 99 108 11 vtocl φxIEaxballEr×axballErTotBndaxballErEaxballEr×axballErBndaxballEr
110 109 adantlr φaBr+xIEaxballEr×axballErTotBndaxballErEaxballEr×axballErBndaxballEr
111 98 110 mpbird φaBr+xIEaxballEr×axballErTotBndaxballEr
112 eqid yIRy𝑠ayballdistRyBaseRy×BaseRyr=yIRy𝑠ayballdistRyBaseRy×BaseRyr
113 81 112 69 fvmpt xIyIRy𝑠ayballdistRyBaseRy×BaseRyrx=Rx𝑠axballEr
114 113 adantl φaBr+xIyIRy𝑠ayballdistRyBaseRy×BaseRyrx=Rx𝑠axballEr
115 114 fveq2d φaBr+xIdistyIRy𝑠ayballdistRyBaseRy×BaseRyrx=distRx𝑠axballEr
116 eqid Rx𝑠axballEr=Rx𝑠axballEr
117 eqid distRx=distRx
118 116 117 ressds axballErVdistRx=distRx𝑠axballEr
119 99 118 ax-mp distRx=distRx𝑠axballEr
120 115 119 eqtr4di φaBr+xIdistyIRy𝑠ayballdistRyBaseRy×BaseRyrx=distRx
121 114 fveq2d φaBr+xIBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx=BaseRx𝑠axballEr
122 rpxr r+r*
123 122 ad2antll φaBr+r*
124 123 adantr φaBr+xIr*
125 blssm E∞MetVaxVr*axballErV
126 87 94 124 125 syl3anc φaBr+xIaxballErV
127 116 3 ressbas2 axballErVaxballEr=BaseRx𝑠axballEr
128 126 127 syl φaBr+xIaxballEr=BaseRx𝑠axballEr
129 121 128 eqtr4d φaBr+xIBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx=axballEr
130 129 sqxpeqd φaBr+xIBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx×BaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx=axballEr×axballEr
131 120 130 reseq12d φaBr+xIdistyIRy𝑠ayballdistRyBaseRy×BaseRyrxBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx×BaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx=distRxaxballEr×axballEr
132 4 reseq1i EaxballEr×axballEr=distRxV×VaxballEr×axballEr
133 xpss12 axballErVaxballErVaxballEr×axballErV×V
134 126 126 133 syl2anc φaBr+xIaxballEr×axballErV×V
135 134 resabs1d φaBr+xIdistRxV×VaxballEr×axballEr=distRxaxballEr×axballEr
136 132 135 eqtrid φaBr+xIEaxballEr×axballEr=distRxaxballEr×axballEr
137 131 136 eqtr4d φaBr+xIdistyIRy𝑠ayballdistRyBaseRy×BaseRyrxBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx×BaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx=EaxballEr×axballEr
138 129 fveq2d φaBr+xITotBndBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx=TotBndaxballEr
139 111 137 138 3eltr4d φaBr+xIdistyIRy𝑠ayballdistRyBaseRy×BaseRyrxBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx×BaseyIRy𝑠ayballdistRyBaseRy×BaseRyrxTotBndBaseyIRy𝑠ayballdistRyBaseRy×BaseRyrx
140 62 63 64 65 66 67 68 84 139 prdstotbnd φaBr+distS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyrTotBndBaseS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr
141 27 adantr φaBr+Y=S𝑠xIRx
142 eqidd φaBr+S𝑠xIRx𝑠axballEr=S𝑠xIRx𝑠axballEr
143 eqid BaseS𝑠xIRx𝑠axballEr=BaseS𝑠xIRx𝑠axballEr
144 82 oveq2i S𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=S𝑠xIRx𝑠axballEr
145 144 fveq2i distS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=distS𝑠xIRx𝑠axballEr
146 fvexd φaBr+xIRxV
147 99 a1i φaBr+xIaxballErV
148 141 142 143 5 145 67 67 68 146 147 ressprdsds φaBr+distS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=DBaseS𝑠xIRx𝑠axballEr×BaseS𝑠xIRx𝑠axballEr
149 128 ixpeq2dva φaBr+xIaxballEr=xIBaseRx𝑠axballEr
150 70 cbvmptv yIRy=xIRx
151 150 oveq2i S𝑠yIRy=S𝑠xIRx
152 27 151 eqtr4di φY=S𝑠yIRy
153 152 fveq2d φdistY=distS𝑠yIRy
154 5 153 eqtrid φD=distS𝑠yIRy
155 154 fveq2d φballD=balldistS𝑠yIRy
156 155 oveqdr φaBr+aballDr=aballdistS𝑠yIRyr
157 eqid BaseS𝑠yIRy=BaseS𝑠yIRy
158 eqid distS𝑠yIRy=distS𝑠yIRy
159 152 fveq2d φBaseY=BaseS𝑠yIRy
160 2 159 eqtrid φB=BaseS𝑠yIRy
161 160 adantr φaBr+B=BaseS𝑠yIRy
162 90 161 eleqtrd φaBr+aBaseS𝑠yIRy
163 rpgt0 r+0<r
164 163 ad2antll φaBr+0<r
165 151 157 3 4 158 67 68 146 87 162 123 164 prdsbl φaBr+aballdistS𝑠yIRyr=xIaxballEr
166 156 165 eqtrd φaBr+aballDr=xIaxballEr
167 eqid S𝑠xIRx𝑠axballEr=S𝑠xIRx𝑠axballEr
168 69 a1i φaBr+xIRx𝑠axballErV
169 168 ralrimiva φaBr+xIRx𝑠axballErV
170 eqid BaseRx𝑠axballEr=BaseRx𝑠axballEr
171 167 143 67 68 169 170 prdsbas3 φaBr+BaseS𝑠xIRx𝑠axballEr=xIBaseRx𝑠axballEr
172 149 166 171 3eqtr4rd φaBr+BaseS𝑠xIRx𝑠axballEr=aballDr
173 172 sqxpeqd φaBr+BaseS𝑠xIRx𝑠axballEr×BaseS𝑠xIRx𝑠axballEr=aballDr×aballDr
174 173 reseq2d φaBr+DBaseS𝑠xIRx𝑠axballEr×BaseS𝑠xIRx𝑠axballEr=DaballDr×aballDr
175 148 174 eqtrd φaBr+distS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=DaballDr×aballDr
176 144 fveq2i BaseS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=BaseS𝑠xIRx𝑠axballEr
177 176 172 eqtrid φaBr+BaseS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=aballDr
178 177 fveq2d φaBr+TotBndBaseS𝑠yIRy𝑠ayballdistRyBaseRy×BaseRyr=TotBndaballDr
179 140 175 178 3eltr3d φaBr+DaballDr×aballDrTotBndaballDr
180 48 49 61 179 syl12anc φaACBndArAaballDrDaballDr×aballDrTotBndaballDr
181 totbndss DaballDr×aballDrTotBndaballDrAaballDrDaballDr×aballDrA×ATotBndA
182 180 43 181 syl2anc φaACBndArAaballDrDaballDr×aballDrA×ATotBndA
183 47 182 eqeltrrd φaACBndArAaballDrCTotBndA
184 42 183 rexlimddv φaACBndACTotBndA
185 184 exp32 φaACBndACTotBndA
186 185 exlimdv φaaACBndACTotBndA
187 17 186 biimtrid φACBndACTotBndA
188 16 187 pm2.61dne φCBndACTotBndA
189 12 188 impbid2 φCTotBndACBndA