Metamath Proof Explorer


Theorem pwfseqlem3

Description: Lemma for pwfseq . Using the construction D from pwfseqlem1 , produce a function F that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015)

Ref Expression
Hypotheses pwfseqlem4.g φG:𝒫A1-1nωAn
pwfseqlem4.x φXA
pwfseqlem4.h φH:ω1-1 ontoX
pwfseqlem4.ps ψxArx×xrWexωx
pwfseqlem4.k φψK:nωxn1-1x
pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
pwfseqlem4.f F=xV,rVifxFinHcardxDzω|¬Dzx
Assertion pwfseqlem3 φψxFrAx

Proof

Step Hyp Ref Expression
1 pwfseqlem4.g φG:𝒫A1-1nωAn
2 pwfseqlem4.x φXA
3 pwfseqlem4.h φH:ω1-1 ontoX
4 pwfseqlem4.ps ψxArx×xrWexωx
5 pwfseqlem4.k φψK:nωxn1-1x
6 pwfseqlem4.d D=Gwx|K-1wranG¬wG-1K-1w
7 pwfseqlem4.f F=xV,rVifxFinHcardxDzω|¬Dzx
8 vex xV
9 vex rV
10 fvex HcardxV
11 fvex Dzω|¬DzxV
12 10 11 ifex ifxFinHcardxDzω|¬DzxV
13 7 ovmpt4g xVrVifxFinHcardxDzω|¬DzxVxFr=ifxFinHcardxDzω|¬Dzx
14 8 9 12 13 mp3an xFr=ifxFinHcardxDzω|¬Dzx
15 4 simprbi ψωx
16 15 adantl φψωx
17 domnsym ωx¬xω
18 16 17 syl φψ¬xω
19 isfinite xFinxω
20 18 19 sylnibr φψ¬xFin
21 20 iffalsed φψifxFinHcardxDzω|¬Dzx=Dzω|¬Dzx
22 14 21 eqtrid φψxFr=Dzω|¬Dzx
23 1 2 3 4 5 6 pwfseqlem1 φψDnωAnnωxn
24 eldif DnωAnnωxnDnωAn¬Dnωxn
25 23 24 sylib φψDnωAn¬Dnωxn
26 25 simpld φψDnωAn
27 eliun DnωAnnωDAn
28 26 27 sylib φψnωDAn
29 elmapi DAnD:nA
30 29 ad2antll φψnωDAnD:nA
31 ssiun2 nωxnnωxn
32 31 ad2antrl φψnωDAnxnnωxn
33 25 simprd φψ¬Dnωxn
34 33 adantr φψnωDAn¬Dnωxn
35 32 34 ssneldd φψnωDAn¬Dxn
36 vex nV
37 8 36 elmap DxnD:nx
38 ffn D:nADFnn
39 ffnfv D:nxDFnnznDzx
40 39 baib DFnnD:nxznDzx
41 30 38 40 3syl φψnωDAnD:nxznDzx
42 37 41 bitrid φψnωDAnDxnznDzx
43 35 42 mtbid φψnωDAn¬znDzx
44 nnon nωnOn
45 44 ad2antrl φψnωDAnnOn
46 ssrab2 zω|¬Dzxω
47 omsson ωOn
48 46 47 sstri zω|¬DzxOn
49 ordom Ordω
50 simprl φψnωDAnnω
51 ordelss Ordωnωnω
52 49 50 51 sylancr φψnωDAnnω
53 rexnal zn¬Dzx¬znDzx
54 43 53 sylibr φψnωDAnzn¬Dzx
55 ssrexv nωzn¬Dzxzω¬Dzx
56 52 54 55 sylc φψnωDAnzω¬Dzx
57 rabn0 zω|¬Dzxzω¬Dzx
58 56 57 sylibr φψnωDAnzω|¬Dzx
59 onint zω|¬DzxOnzω|¬Dzxzω|¬Dzxzω|¬Dzx
60 48 58 59 sylancr φψnωDAnzω|¬Dzxzω|¬Dzx
61 48 60 sselid φψnωDAnzω|¬DzxOn
62 ontri1 nOnzω|¬DzxOnnzω|¬Dzx¬zω|¬Dzxn
63 45 61 62 syl2anc φψnωDAnnzω|¬Dzx¬zω|¬Dzxn
64 ssintrab nzω|¬Dzxzω¬Dzxnz
65 nnon zωzOn
66 ontri1 nOnzOnnz¬zn
67 44 65 66 syl2an nωzωnz¬zn
68 67 imbi2d nωzω¬Dzxnz¬Dzx¬zn
69 con34b znDzx¬Dzx¬zn
70 68 69 bitr4di nωzω¬DzxnzznDzx
71 70 pm5.74da nωzω¬DzxnzzωznDzx
72 bi2.04 zωznDzxznzωDzx
73 71 72 bitrdi nωzω¬DzxnzznzωDzx
74 elnn znnωzω
75 pm2.27 zωzωDzxDzx
76 74 75 syl znnωzωDzxDzx
77 76 expcom nωznzωDzxDzx
78 77 a2d nωznzωDzxznDzx
79 73 78 sylbid nωzω¬DzxnzznDzx
80 79 ad2antrl φψnωDAnzω¬DzxnzznDzx
81 80 ralimdv2 φψnωDAnzω¬DzxnzznDzx
82 64 81 biimtrid φψnωDAnnzω|¬DzxznDzx
83 63 82 sylbird φψnωDAn¬zω|¬DzxnznDzx
84 43 83 mt3d φψnωDAnzω|¬Dzxn
85 30 84 ffvelcdmd φψnωDAnDzω|¬DzxA
86 fveq2 y=zω|¬DzxDy=Dzω|¬Dzx
87 86 eleq1d y=zω|¬DzxDyxDzω|¬Dzxx
88 87 notbid y=zω|¬Dzx¬Dyx¬Dzω|¬Dzxx
89 fveq2 z=yDz=Dy
90 89 eleq1d z=yDzxDyx
91 90 notbid z=y¬Dzx¬Dyx
92 91 cbvrabv zω|¬Dzx=yω|¬Dyx
93 88 92 elrab2 zω|¬Dzxzω|¬Dzxzω|¬Dzxω¬Dzω|¬Dzxx
94 93 simprbi zω|¬Dzxzω|¬Dzx¬Dzω|¬Dzxx
95 60 94 syl φψnωDAn¬Dzω|¬Dzxx
96 85 95 eldifd φψnωDAnDzω|¬DzxAx
97 28 96 rexlimddv φψDzω|¬DzxAx
98 22 97 eqeltrd φψxFrAx