Metamath Proof Explorer


Theorem sat1el2xp

Description: The first component of an element of the value of the satisfaction predicate as function over wff codes in the empty model with an empty binary relation is a member of a doubled Cartesian product. (Contributed by AV, 17-Sep-2023)

Ref Expression
Assertion sat1el2xp NωwSatNab1stwω×a×b

Proof

Step Hyp Ref Expression
1 fveq2 x=Satx=Sat
2 1 raleqdv x=wSatxab1stwω×a×bwSatab1stwω×a×b
3 fveq2 x=ySatx=Saty
4 3 raleqdv x=ywSatxab1stwω×a×bwSatyab1stwω×a×b
5 fveq2 x=sucySatx=Satsucy
6 5 raleqdv x=sucywSatxab1stwω×a×bwSatsucyab1stwω×a×b
7 fveq2 x=NSatx=SatN
8 7 raleqdv x=NwSatxab1stwω×a×bwSatNab1stwω×a×b
9 eqeq1 x=1stwx=i𝑔j1stw=i𝑔j
10 9 2rexbidv x=1stwiωjωx=i𝑔jiωjω1stw=i𝑔j
11 10 anbi2d x=1stwz=iωjωx=i𝑔jz=iωjω1stw=i𝑔j
12 eqeq1 z=2ndwz=2ndw=
13 12 anbi1d z=2ndwz=iωjω1stw=i𝑔j2ndw=iωjω1stw=i𝑔j
14 11 13 elopabi wxz|z=iωjωx=i𝑔j2ndw=iωjω1stw=i𝑔j
15 goel iωjωi𝑔j=ij
16 15 eqeq2d iωjω1stw=i𝑔j1stw=ij
17 omex ωV
18 17 17 pm3.2i ωVωV
19 peano1 ω
20 19 a1i iωjωω
21 opelxpi iωjωijω×ω
22 20 21 opelxpd iωjωijω×ω×ω
23 xpeq12 a=ωb=ωa×b=ω×ω
24 23 xpeq2d a=ωb=ωω×a×b=ω×ω×ω
25 24 eleq2d a=ωb=ωijω×a×bijω×ω×ω
26 25 spc2egv ωVωVijω×ω×ωabijω×a×b
27 18 22 26 mpsyl iωjωabijω×a×b
28 eleq1 1stw=ij1stwω×a×bijω×a×b
29 28 2exbidv 1stw=ijab1stwω×a×babijω×a×b
30 27 29 syl5ibrcom iωjω1stw=ijab1stwω×a×b
31 16 30 sylbid iωjω1stw=i𝑔jab1stwω×a×b
32 31 rexlimivv iωjω1stw=i𝑔jab1stwω×a×b
33 32 adantl 2ndw=iωjω1stw=i𝑔jab1stwω×a×b
34 14 33 syl wxz|z=iωjωx=i𝑔jab1stwω×a×b
35 satf00 Sat=xz|z=iωjωx=i𝑔j
36 34 35 eleq2s wSatab1stwω×a×b
37 36 rgen wSatab1stwω×a×b
38 omsucelsucb yωsucysucω
39 satf0sucom sucysucωSatsucy=recfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jsucy
40 38 39 sylbi yωSatsucy=recfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jsucy
41 40 adantr yωwSatyab1stwω×a×bSatsucy=recfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jsucy
42 nnon yωyOn
43 rdgsuc yOnrecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jsucy=fVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jy
44 42 43 syl yωrecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jsucy=fVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jy
45 44 adantr yωwSatyab1stwω×a×brecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jsucy=fVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jy
46 elelsuc yωysucω
47 satf0sucom ysucωSaty=recfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jy
48 46 47 syl yωSaty=recfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jy
49 48 eqcomd yωrecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jy=Saty
50 49 fveq2d yωfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jy=fVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuSaty
51 50 adantr yωwSatyab1stwω×a×bfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jy=fVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuSaty
52 eqidd yωwSatyab1stwω×a×bfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stu=fVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stu
53 id f=Satyf=Saty
54 rexeq f=Satyvfx=1stu𝑔1stvvSatyx=1stu𝑔1stv
55 54 orbi1d f=Satyvfx=1stu𝑔1stviωx=𝑔i1stuvSatyx=1stu𝑔1stviωx=𝑔i1stu
56 55 rexeqbi1dv f=Satyufvfx=1stu𝑔1stviωx=𝑔i1stuuSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
57 56 anbi2d f=Satyz=ufvfx=1stu𝑔1stviωx=𝑔i1stuz=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
58 57 opabbidv f=Satyxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stu=xz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
59 53 58 uneq12d f=Satyfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stu=Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
60 59 adantl yωwSatyab1stwω×a×bf=Satyfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stu=Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
61 fvexd yωwSatyab1stwω×a×bSatyV
62 17 a1i yωwSatyab1stwω×a×bωV
63 satf0suclem SatyVSatyVωVxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuV
64 61 61 62 63 syl3anc yωwSatyab1stwω×a×bxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuV
65 unexg SatyVxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuVSatyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuV
66 61 64 65 syl2anc yωwSatyab1stwω×a×bSatyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuV
67 52 60 61 66 fvmptd yωwSatyab1stwω×a×bfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuSaty=Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
68 45 51 67 3eqtrd yωwSatyab1stwω×a×brecfVfxz|z=ufvfx=1stu𝑔1stviωx=𝑔i1stuxz|z=iωjωx=i𝑔jsucy=Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
69 41 68 eqtrd yωwSatyab1stwω×a×bSatsucy=Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
70 69 eleq2d yωwSatyab1stwω×a×btSatsucytSatyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
71 elun tSatyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stutSatytxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
72 70 71 bitrdi yωwSatyab1stwω×a×btSatsucytSatytxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
73 fveq2 w=t1stw=1stt
74 73 eleq1d w=t1stwω×a×b1sttω×a×b
75 74 2exbidv w=tab1stwω×a×bab1sttω×a×b
76 75 rspccv wSatyab1stwω×a×btSatyab1sttω×a×b
77 76 adantl yωwSatyab1stwω×a×btSatyab1sttω×a×b
78 fveq2 w=v1stw=1stv
79 78 eleq1d w=v1stwω×a×b1stvω×a×b
80 79 2exbidv w=vab1stwω×a×bab1stvω×a×b
81 80 rspcva vSatywSatyab1stwω×a×bab1stvω×a×b
82 sels 1stvω×a×bs1stvs
83 82 exlimivv ab1stvω×a×bs1stvs
84 81 83 syl vSatywSatyab1stwω×a×bs1stvs
85 84 expcom wSatyab1stwω×a×bvSatys1stvs
86 fveq2 w=u1stw=1stu
87 86 eleq1d w=u1stwω×a×b1stuω×a×b
88 87 2exbidv w=uab1stwω×a×bab1stuω×a×b
89 88 rspcva uSatywSatyab1stwω×a×bab1stuω×a×b
90 sels 1stuω×a×bs1stus
91 90 exlimivv ab1stuω×a×bs1stus
92 89 91 syl uSatywSatyab1stwω×a×bs1stus
93 eleq2w s=r1stus1stur
94 93 cbvexvw s1stusr1stur
95 vex rV
96 vex sV
97 95 96 pm3.2i rVsV
98 df-ov 1stu𝑔1stv=𝑔1stu1stv
99 df-gona 𝑔=eV×V1𝑜e
100 opeq2 e=1stu1stv1𝑜e=1𝑜1stu1stv
101 opelvvg 1stur1stvs1stu1stvV×V
102 opex 1𝑜1stu1stvV
103 102 a1i 1stur1stvs1𝑜1stu1stvV
104 99 100 101 103 fvmptd3 1stur1stvs𝑔1stu1stv=1𝑜1stu1stv
105 98 104 eqtrid 1stur1stvs1stu𝑔1stv=1𝑜1stu1stv
106 1onn 1𝑜ω
107 106 a1i 1stur1stvs1𝑜ω
108 opelxpi 1stur1stvs1stu1stvr×s
109 107 108 opelxpd 1stur1stvs1𝑜1stu1stvω×r×s
110 105 109 eqeltrd 1stur1stvs1stu𝑔1stvω×r×s
111 xpeq12 a=rb=sa×b=r×s
112 111 xpeq2d a=rb=sω×a×b=ω×r×s
113 112 eleq2d a=rb=s1stu𝑔1stvω×a×b1stu𝑔1stvω×r×s
114 113 spc2egv rVsV1stu𝑔1stvω×r×sab1stu𝑔1stvω×a×b
115 97 110 114 mpsyl 1stur1stvsab1stu𝑔1stvω×a×b
116 eleq1 1stt=1stu𝑔1stv1sttω×a×b1stu𝑔1stvω×a×b
117 116 2exbidv 1stt=1stu𝑔1stvab1sttω×a×bab1stu𝑔1stvω×a×b
118 115 117 syl5ibrcom 1stur1stvs1stt=1stu𝑔1stvab1sttω×a×b
119 118 ex 1stur1stvs1stt=1stu𝑔1stvab1sttω×a×b
120 119 exlimdv 1sturs1stvs1stt=1stu𝑔1stvab1sttω×a×b
121 120 com23 1stur1stt=1stu𝑔1stvs1stvsab1sttω×a×b
122 121 exlimiv r1stur1stt=1stu𝑔1stvs1stvsab1sttω×a×b
123 94 122 sylbi s1stus1stt=1stu𝑔1stvs1stvsab1sttω×a×b
124 92 123 syl uSatywSatyab1stwω×a×b1stt=1stu𝑔1stvs1stvsab1sttω×a×b
125 124 expcom wSatyab1stwω×a×buSaty1stt=1stu𝑔1stvs1stvsab1sttω×a×b
126 125 com24 wSatyab1stwω×a×bs1stvs1stt=1stu𝑔1stvuSatyab1sttω×a×b
127 85 126 syld wSatyab1stwω×a×bvSaty1stt=1stu𝑔1stvuSatyab1sttω×a×b
128 127 adantl yωwSatyab1stwω×a×bvSaty1stt=1stu𝑔1stvuSatyab1sttω×a×b
129 128 com14 uSatyvSaty1stt=1stu𝑔1stvyωwSatyab1stwω×a×bab1sttω×a×b
130 129 rexlimdv uSatyvSaty1stt=1stu𝑔1stvyωwSatyab1stwω×a×bab1sttω×a×b
131 17 96 pm3.2i ωVsV
132 df-goal 𝑔i1stu=2𝑜i1stu
133 2onn 2𝑜ω
134 133 a1i 1stusiω2𝑜ω
135 opelxpi iω1stusi1stuω×s
136 135 ancoms 1stusiωi1stuω×s
137 134 136 opelxpd 1stusiω2𝑜i1stuω×ω×s
138 132 137 eqeltrid 1stusiω𝑔i1stuω×ω×s
139 138 3adant3 1stusiω1stt=𝑔i1stu𝑔i1stuω×ω×s
140 eleq1 1stt=𝑔i1stu1sttω×ω×s𝑔i1stuω×ω×s
141 140 3ad2ant3 1stusiω1stt=𝑔i1stu1sttω×ω×s𝑔i1stuω×ω×s
142 139 141 mpbird 1stusiω1stt=𝑔i1stu1sttω×ω×s
143 xpeq12 a=ωb=sa×b=ω×s
144 143 xpeq2d a=ωb=sω×a×b=ω×ω×s
145 144 eleq2d a=ωb=s1sttω×a×b1sttω×ω×s
146 145 spc2egv ωVsV1sttω×ω×sab1sttω×a×b
147 131 142 146 mpsyl 1stusiω1stt=𝑔i1stuab1sttω×a×b
148 147 3exp 1stusiω1stt=𝑔i1stuab1sttω×a×b
149 148 com23 1stus1stt=𝑔i1stuiωab1sttω×a×b
150 149 a1d 1stusyω1stt=𝑔i1stuiωab1sttω×a×b
151 150 exlimiv s1stusyω1stt=𝑔i1stuiωab1sttω×a×b
152 92 151 syl uSatywSatyab1stwω×a×byω1stt=𝑔i1stuiωab1sttω×a×b
153 152 ex uSatywSatyab1stwω×a×byω1stt=𝑔i1stuiωab1sttω×a×b
154 153 impcomd uSatyyωwSatyab1stwω×a×b1stt=𝑔i1stuiωab1sttω×a×b
155 154 com24 uSatyiω1stt=𝑔i1stuyωwSatyab1stwω×a×bab1sttω×a×b
156 155 rexlimdv uSatyiω1stt=𝑔i1stuyωwSatyab1stwω×a×bab1sttω×a×b
157 130 156 jaod uSatyvSaty1stt=1stu𝑔1stviω1stt=𝑔i1stuyωwSatyab1stwω×a×bab1sttω×a×b
158 157 rexlimiv uSatyvSaty1stt=1stu𝑔1stviω1stt=𝑔i1stuyωwSatyab1stwω×a×bab1sttω×a×b
159 158 adantl 2ndt=uSatyvSaty1stt=1stu𝑔1stviω1stt=𝑔i1stuyωwSatyab1stwω×a×bab1sttω×a×b
160 eqeq1 x=1sttx=1stu𝑔1stv1stt=1stu𝑔1stv
161 160 rexbidv x=1sttvSatyx=1stu𝑔1stvvSaty1stt=1stu𝑔1stv
162 eqeq1 x=1sttx=𝑔i1stu1stt=𝑔i1stu
163 162 rexbidv x=1sttiωx=𝑔i1stuiω1stt=𝑔i1stu
164 161 163 orbi12d x=1sttvSatyx=1stu𝑔1stviωx=𝑔i1stuvSaty1stt=1stu𝑔1stviω1stt=𝑔i1stu
165 164 rexbidv x=1sttuSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuuSatyvSaty1stt=1stu𝑔1stviω1stt=𝑔i1stu
166 165 anbi2d x=1sttz=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuz=uSatyvSaty1stt=1stu𝑔1stviω1stt=𝑔i1stu
167 eqeq1 z=2ndtz=2ndt=
168 167 anbi1d z=2ndtz=uSatyvSaty1stt=1stu𝑔1stviω1stt=𝑔i1stu2ndt=uSatyvSaty1stt=1stu𝑔1stviω1stt=𝑔i1stu
169 166 168 elopabi txz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu2ndt=uSatyvSaty1stt=1stu𝑔1stviω1stt=𝑔i1stu
170 159 169 syl11 yωwSatyab1stwω×a×btxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuab1sttω×a×b
171 77 170 jaod yωwSatyab1stwω×a×btSatytxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuab1sttω×a×b
172 72 171 sylbid yωwSatyab1stwω×a×btSatsucyab1sttω×a×b
173 172 ex yωwSatyab1stwω×a×btSatsucyab1sttω×a×b
174 173 ralrimdv yωwSatyab1stwω×a×btSatsucyab1sttω×a×b
175 75 cbvralvw wSatsucyab1stwω×a×btSatsucyab1sttω×a×b
176 174 175 syl6ibr yωwSatyab1stwω×a×bwSatsucyab1stwω×a×b
177 2 4 6 8 37 176 finds NωwSatNab1stwω×a×b