Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
The Prime Number Theorem
selberg34r
Next ⟩
pntsval
Metamath Proof Explorer
Ascii
Unicode
Theorem
selberg34r
Description:
The sum of
selberg3r
and
selberg4r
.
(Contributed by
Mario Carneiro
, 31-May-2016)
Ref
Expression
Hypothesis
pntrval.r
⊢
R
=
a
∈
ℝ
+
⟼
ψ
a
−
a
Assertion
selberg34r
⊢
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
𝑂
1
Proof
Step
Hyp
Ref
Expression
1
pntrval.r
⊢
R
=
a
∈
ℝ
+
⟼
ψ
a
−
a
2
2re
⊢
2
∈
ℝ
3
2
a1i
⊢
⊤
∧
x
∈
1
+∞
→
2
∈
ℝ
4
elioore
⊢
x
∈
1
+∞
→
x
∈
ℝ
5
4
adantl
⊢
⊤
∧
x
∈
1
+∞
→
x
∈
ℝ
6
1rp
⊢
1
∈
ℝ
+
7
6
a1i
⊢
⊤
∧
x
∈
1
+∞
→
1
∈
ℝ
+
8
1red
⊢
⊤
∧
x
∈
1
+∞
→
1
∈
ℝ
9
eliooord
⊢
x
∈
1
+∞
→
1
<
x
∧
x
<
+∞
10
9
adantl
⊢
⊤
∧
x
∈
1
+∞
→
1
<
x
∧
x
<
+∞
11
10
simpld
⊢
⊤
∧
x
∈
1
+∞
→
1
<
x
12
8
5
11
ltled
⊢
⊤
∧
x
∈
1
+∞
→
1
≤
x
13
5
7
12
rpgecld
⊢
⊤
∧
x
∈
1
+∞
→
x
∈
ℝ
+
14
1
pntrf
⊢
R
:
ℝ
+
⟶
ℝ
15
14
ffvelcdmi
⊢
x
∈
ℝ
+
→
R
x
∈
ℝ
16
13
15
syl
⊢
⊤
∧
x
∈
1
+∞
→
R
x
∈
ℝ
17
13
relogcld
⊢
⊤
∧
x
∈
1
+∞
→
log
x
∈
ℝ
18
16
17
remulcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
∈
ℝ
19
3
18
remulcld
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
∈
ℝ
20
19
recnd
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
∈
ℂ
21
5
11
rplogcld
⊢
⊤
∧
x
∈
1
+∞
→
log
x
∈
ℝ
+
22
3
21
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∈
ℝ
23
22
recnd
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∈
ℂ
24
fzfid
⊢
⊤
∧
x
∈
1
+∞
→
1
…
x
∈
Fin
25
13
adantr
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
x
∈
ℝ
+
26
elfznn
⊢
n
∈
1
…
x
→
n
∈
ℕ
27
26
adantl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℕ
28
27
nnrpd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℝ
+
29
25
28
rpdivcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
x
n
∈
ℝ
+
30
14
ffvelcdmi
⊢
x
n
∈
ℝ
+
→
R
x
n
∈
ℝ
31
29
30
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∈
ℝ
32
fzfid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
…
n
∈
Fin
33
dvdsssfz1
⊢
n
∈
ℕ
→
y
∈
ℕ
|
y
∥
n
⊆
1
…
n
34
27
33
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
y
∈
ℕ
|
y
∥
n
⊆
1
…
n
35
32
34
ssfid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
y
∈
ℕ
|
y
∥
n
∈
Fin
36
ssrab2
⊢
y
∈
ℕ
|
y
∥
n
⊆
ℕ
37
simpr
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
m
∈
y
∈
ℕ
|
y
∥
n
38
36
37
sselid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
m
∈
ℕ
39
vmacl
⊢
m
∈
ℕ
→
Λ
m
∈
ℝ
40
38
39
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
m
∈
ℝ
41
dvdsdivcl
⊢
n
∈
ℕ
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
n
m
∈
y
∈
ℕ
|
y
∥
n
42
27
41
sylan
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
n
m
∈
y
∈
ℕ
|
y
∥
n
43
36
42
sselid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
n
m
∈
ℕ
44
vmacl
⊢
n
m
∈
ℕ
→
Λ
n
m
∈
ℝ
45
43
44
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
n
m
∈
ℝ
46
40
45
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
m
Λ
n
m
∈
ℝ
47
35
46
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
∈
ℝ
48
vmacl
⊢
n
∈
ℕ
→
Λ
n
∈
ℝ
49
27
48
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
∈
ℝ
50
28
relogcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
log
n
∈
ℝ
51
49
50
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
log
n
∈
ℝ
52
47
51
resubcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
53
31
52
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
54
24
53
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
55
54
recnd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℂ
56
23
55
mulcld
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℂ
57
20
56
subcld
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℂ
58
5
recnd
⊢
⊤
∧
x
∈
1
+∞
→
x
∈
ℂ
59
2cnd
⊢
⊤
∧
x
∈
1
+∞
→
2
∈
ℂ
60
13
rpne0d
⊢
⊤
∧
x
∈
1
+∞
→
x
≠
0
61
2ne0
⊢
2
≠
0
62
61
a1i
⊢
⊤
∧
x
∈
1
+∞
→
2
≠
0
63
57
58
59
60
62
divdiv32d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
2
=
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
2
x
64
57
58
60
divcld
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
∈
ℂ
65
64
59
62
divrecd
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
2
=
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
1
2
66
20
56
59
62
divsubdird
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
2
=
2
R
x
log
x
2
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
2
67
18
recnd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
∈
ℂ
68
67
59
62
divcan3d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
2
=
R
x
log
x
69
21
rpcnd
⊢
⊤
∧
x
∈
1
+∞
→
log
x
∈
ℂ
70
21
rpne0d
⊢
⊤
∧
x
∈
1
+∞
→
log
x
≠
0
71
59
69
55
70
div32d
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
2
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
72
71
oveq1d
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
2
=
2
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
2
73
54
21
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℝ
74
73
recnd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℂ
75
74
59
62
divcan3d
⊢
⊤
∧
x
∈
1
+∞
→
2
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
2
=
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
76
72
75
eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
2
=
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
77
68
76
oveq12d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
2
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
2
=
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
78
66
77
eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
2
=
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
79
78
oveq1d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
2
x
=
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
80
63
65
79
3eqtr3d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
1
2
=
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
81
80
mpteq2dva
⊢
⊤
→
x
∈
1
+∞
⟼
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
1
2
=
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
82
22
54
remulcld
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
83
19
82
resubcld
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
84
83
13
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
∈
ℝ
85
8
rehalfcld
⊢
⊤
∧
x
∈
1
+∞
→
1
2
∈
ℝ
86
31
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∈
ℂ
87
47
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
∈
ℂ
88
49
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
∈
ℂ
89
50
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
log
n
∈
ℂ
90
88
89
mulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
log
n
∈
ℂ
91
86
87
90
subdid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
R
x
n
Λ
n
log
n
92
86
88
89
mul12d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
Λ
n
log
n
=
Λ
n
R
x
n
log
n
93
88
86
89
mulassd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
R
x
n
log
n
=
Λ
n
R
x
n
log
n
94
92
93
eqtr4d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
Λ
n
log
n
=
Λ
n
R
x
n
log
n
95
94
oveq2d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
R
x
n
Λ
n
log
n
=
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
R
x
n
log
n
96
91
95
eqtrd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
R
x
n
log
n
97
96
sumeq2dv
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
R
x
n
log
n
98
86
87
mulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
∈
ℂ
99
88
86
mulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
R
x
n
∈
ℂ
100
99
89
mulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
R
x
n
log
n
∈
ℂ
101
24
98
100
fsumsub
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
R
x
n
log
n
=
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
∑
n
=
1
x
Λ
n
R
x
n
log
n
102
46
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
m
Λ
n
m
∈
ℂ
103
35
86
102
fsummulc2
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
=
∑
m
∈
y
∈
ℕ
|
y
∥
n
R
x
n
Λ
m
Λ
n
m
104
103
sumeq2dv
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
=
∑
n
=
1
x
∑
m
∈
y
∈
ℕ
|
y
∥
n
R
x
n
Λ
m
Λ
n
m
105
oveq2
⊢
n
=
m
k
→
x
n
=
x
m
k
106
105
fveq2d
⊢
n
=
m
k
→
R
x
n
=
R
x
m
k
107
fvoveq1
⊢
n
=
m
k
→
Λ
n
m
=
Λ
m
k
m
108
107
oveq2d
⊢
n
=
m
k
→
Λ
m
Λ
n
m
=
Λ
m
Λ
m
k
m
109
106
108
oveq12d
⊢
n
=
m
k
→
R
x
n
Λ
m
Λ
n
m
=
R
x
m
k
Λ
m
Λ
m
k
m
110
31
adantrr
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
R
x
n
∈
ℝ
111
40
anasss
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
m
∈
ℝ
112
45
anasss
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
n
m
∈
ℝ
113
111
112
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
m
Λ
n
m
∈
ℝ
114
110
113
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
R
x
n
Λ
m
Λ
n
m
∈
ℝ
115
114
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
R
x
n
Λ
m
Λ
n
m
∈
ℂ
116
109
5
115
dvdsflsumcom
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
∑
m
∈
y
∈
ℕ
|
y
∥
n
R
x
n
Λ
m
Λ
n
m
=
∑
m
=
1
x
∑
k
=
1
x
m
R
x
m
k
Λ
m
Λ
m
k
m
117
58
ad2antrr
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
x
∈
ℂ
118
elfznn
⊢
m
∈
1
…
x
→
m
∈
ℕ
119
118
adantl
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
m
∈
ℕ
120
119
nnrpd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
m
∈
ℝ
+
121
120
adantr
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
m
∈
ℝ
+
122
121
rpcnd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
m
∈
ℂ
123
elfznn
⊢
k
∈
1
…
x
m
→
k
∈
ℕ
124
123
adantl
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
k
∈
ℕ
125
124
nncnd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
k
∈
ℂ
126
121
rpne0d
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
m
≠
0
127
124
nnne0d
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
k
≠
0
128
117
122
125
126
127
divdiv1d
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
x
m
k
=
x
m
k
129
128
eqcomd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
x
m
k
=
x
m
k
130
129
fveq2d
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
R
x
m
k
=
R
x
m
k
131
125
122
126
divcan3d
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
m
k
m
=
k
132
131
fveq2d
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
Λ
m
k
m
=
Λ
k
133
132
oveq2d
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
Λ
m
Λ
m
k
m
=
Λ
m
Λ
k
134
130
133
oveq12d
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
R
x
m
k
Λ
m
Λ
m
k
m
=
R
x
m
k
Λ
m
Λ
k
135
13
ad2antrr
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
x
∈
ℝ
+
136
135
121
rpdivcld
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
x
m
∈
ℝ
+
137
124
nnrpd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
k
∈
ℝ
+
138
136
137
rpdivcld
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
x
m
k
∈
ℝ
+
139
14
ffvelcdmi
⊢
x
m
k
∈
ℝ
+
→
R
x
m
k
∈
ℝ
140
138
139
syl
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
R
x
m
k
∈
ℝ
141
140
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
R
x
m
k
∈
ℂ
142
119
39
syl
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
Λ
m
∈
ℝ
143
142
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
Λ
m
∈
ℂ
144
143
adantr
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
Λ
m
∈
ℂ
145
vmacl
⊢
k
∈
ℕ
→
Λ
k
∈
ℝ
146
124
145
syl
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
Λ
k
∈
ℝ
147
146
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
Λ
k
∈
ℂ
148
144
147
mulcld
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
Λ
m
Λ
k
∈
ℂ
149
141
148
mulcomd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
R
x
m
k
Λ
m
Λ
k
=
Λ
m
Λ
k
R
x
m
k
150
144
147
141
mulassd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
Λ
m
Λ
k
R
x
m
k
=
Λ
m
Λ
k
R
x
m
k
151
134
149
150
3eqtrd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
R
x
m
k
Λ
m
Λ
m
k
m
=
Λ
m
Λ
k
R
x
m
k
152
151
sumeq2dv
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
∑
k
=
1
x
m
R
x
m
k
Λ
m
Λ
m
k
m
=
∑
k
=
1
x
m
Λ
m
Λ
k
R
x
m
k
153
fzfid
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
1
…
x
m
∈
Fin
154
146
140
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
Λ
k
R
x
m
k
∈
ℝ
155
154
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
∧
k
∈
1
…
x
m
→
Λ
k
R
x
m
k
∈
ℂ
156
153
143
155
fsummulc2
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
=
∑
k
=
1
x
m
Λ
m
Λ
k
R
x
m
k
157
152
156
eqtr4d
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
∑
k
=
1
x
m
R
x
m
k
Λ
m
Λ
m
k
m
=
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
158
157
sumeq2dv
⊢
⊤
∧
x
∈
1
+∞
→
∑
m
=
1
x
∑
k
=
1
x
m
R
x
m
k
Λ
m
Λ
m
k
m
=
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
159
104
116
158
3eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
=
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
160
159
oveq1d
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
∑
n
=
1
x
Λ
n
R
x
n
log
n
=
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
−
∑
n
=
1
x
Λ
n
R
x
n
log
n
161
97
101
160
3eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
−
∑
n
=
1
x
Λ
n
R
x
n
log
n
162
161
oveq2d
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
−
∑
n
=
1
x
Λ
n
R
x
n
log
n
163
153
154
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
∑
k
=
1
x
m
Λ
k
R
x
m
k
∈
ℝ
164
142
163
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
m
∈
1
…
x
→
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
∈
ℝ
165
24
164
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
→
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
∈
ℝ
166
165
recnd
⊢
⊤
∧
x
∈
1
+∞
→
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
∈
ℂ
167
49
31
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
R
x
n
∈
ℝ
168
167
50
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
R
x
n
log
n
∈
ℝ
169
24
168
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
R
x
n
log
n
∈
ℝ
170
169
recnd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
Λ
n
R
x
n
log
n
∈
ℂ
171
23
166
170
subdid
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
−
∑
n
=
1
x
Λ
n
R
x
n
log
n
=
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
−
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
172
162
171
eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
−
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
173
172
oveq2d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
2
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
−
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
174
23
166
mulcld
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
∈
ℂ
175
22
169
remulcld
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
∈
ℝ
176
175
recnd
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
∈
ℂ
177
20
174
176
subsub3d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
−
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
=
2
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
-
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
178
173
177
eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
2
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
-
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
179
67
2timesd
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
=
R
x
log
x
+
R
x
log
x
180
179
oveq1d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
=
R
x
log
x
+
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
181
67
176
67
add32d
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
+
R
x
log
x
=
R
x
log
x
+
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
182
180
181
eqtr4d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
=
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
+
R
x
log
x
183
182
oveq1d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
-
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
=
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
+
R
x
log
x
-
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
184
18
175
readdcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
∈
ℝ
185
184
recnd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
∈
ℂ
186
185
67
174
addsubassd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
+
R
x
log
x
-
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
=
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
+
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
187
178
183
186
3eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
+
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
188
187
oveq1d
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
=
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
+
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
x
189
67
174
subcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
∈
ℂ
190
185
189
58
60
divdird
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
+
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
x
=
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
x
+
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
x
191
188
190
eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
=
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
x
+
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
x
192
191
mpteq2dva
⊢
⊤
→
x
∈
1
+∞
⟼
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
=
x
∈
1
+∞
⟼
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
x
+
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
x
193
184
13
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
x
∈
ℝ
194
22
165
remulcld
⊢
⊤
∧
x
∈
1
+∞
→
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
∈
ℝ
195
18
194
resubcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
∈
ℝ
196
195
13
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
x
∈
ℝ
197
1
selberg3r
⊢
x
∈
1
+∞
⟼
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
x
∈
𝑂
1
198
197
a1i
⊢
⊤
→
x
∈
1
+∞
⟼
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
x
∈
𝑂
1
199
1
selberg4r
⊢
x
∈
1
+∞
⟼
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
x
∈
𝑂
1
200
199
a1i
⊢
⊤
→
x
∈
1
+∞
⟼
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
x
∈
𝑂
1
201
193
196
198
200
o1add2
⊢
⊤
→
x
∈
1
+∞
⟼
R
x
log
x
+
2
log
x
∑
n
=
1
x
Λ
n
R
x
n
log
n
x
+
R
x
log
x
−
2
log
x
∑
m
=
1
x
Λ
m
∑
k
=
1
x
m
Λ
k
R
x
m
k
x
∈
𝑂
1
202
192
201
eqeltrd
⊢
⊤
→
x
∈
1
+∞
⟼
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
∈
𝑂
1
203
ioossre
⊢
1
+∞
⊆
ℝ
204
1cnd
⊢
⊤
→
1
∈
ℂ
205
204
halfcld
⊢
⊤
→
1
2
∈
ℂ
206
o1const
⊢
1
+∞
⊆
ℝ
∧
1
2
∈
ℂ
→
x
∈
1
+∞
⟼
1
2
∈
𝑂
1
207
203
205
206
sylancr
⊢
⊤
→
x
∈
1
+∞
⟼
1
2
∈
𝑂
1
208
84
85
202
207
o1mul2
⊢
⊤
→
x
∈
1
+∞
⟼
2
R
x
log
x
−
2
log
x
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
x
1
2
∈
𝑂
1
209
81
208
eqeltrrd
⊢
⊤
→
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
𝑂
1
210
209
mptru
⊢
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
𝑂
1