Metamath Proof Explorer


Theorem sge0iunmpt

Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0iunmpt.a φAV
sge0iunmpt.b φxABW
sge0iunmpt.dj φDisjxAB
sge0iunmpt.c φxAkBC0+∞
Assertion sge0iunmpt φsum^kxABC=sum^xAsum^kBC

Proof

Step Hyp Ref Expression
1 sge0iunmpt.a φAV
2 sge0iunmpt.b φxABW
3 sge0iunmpt.dj φDisjxAB
4 sge0iunmpt.c φxAkBC0+∞
5 nfv xφ
6 nfcv _xsum^
7 nfiu1 _xxAB
8 nfcv _xC
9 7 8 nfmpt _xkxABC
10 6 9 nffv _xsum^kxABC
11 nfmpt1 _xxAsum^kBC
12 6 11 nffv _xsum^xAsum^kBC
13 10 12 nfeq xsum^kxABC=sum^xAsum^kBC
14 2 ralrimiva φxABW
15 iunexg AVxABWxABV
16 1 14 15 syl2anc φxABV
17 eliun kxABxAkB
18 17 biimpi kxABxAkB
19 18 adantl φkxABxAkB
20 nfcv _xk
21 20 7 nfel xkxAB
22 5 21 nfan xφkxAB
23 8 nfel1 xC0+∞
24 4 3exp φxAkBC0+∞
25 24 adantr φkxABxAkBC0+∞
26 22 23 25 rexlimd φkxABxAkBC0+∞
27 19 26 mpd φkxABC0+∞
28 eqid kxABC=kxABC
29 27 28 fmptd φkxABC:xAB0+∞
30 16 29 sge0xrcl φsum^kxABC*
31 30 3ad2ant1 φxAsum^kBC=+∞sum^kxABC*
32 id sum^kBC=+∞sum^kBC=+∞
33 32 eqcomd sum^kBC=+∞+∞=sum^kBC
34 33 adantl xAsum^kBC=+∞+∞=sum^kBC
35 34 3adant1 φxAsum^kBC=+∞+∞=sum^kBC
36 16 adantr φxAxABV
37 27 adantlr φxAkxABC0+∞
38 ssiun2 xABxAB
39 38 adantl φxABxAB
40 36 37 39 sge0lessmpt φxAsum^kBCsum^kxABC
41 40 3adant3 φxAsum^kBC=+∞sum^kBCsum^kxABC
42 35 41 eqbrtrd φxAsum^kBC=+∞+∞sum^kxABC
43 31 42 xrgepnfd φxAsum^kBC=+∞sum^kxABC=+∞
44 1 3ad2ant1 φxAsum^kBC=+∞AV
45 nfv xφyA
46 nfcsb1v _xy/xB
47 nfcsb1v _xy/xW
48 46 47 nfel xy/xBy/xW
49 45 48 nfim xφyAy/xBy/xW
50 eleq1w x=yxAyA
51 50 anbi2d x=yφxAφyA
52 csbeq1a x=yB=y/xB
53 csbeq1a x=yW=y/xW
54 52 53 eleq12d x=yBWy/xBy/xW
55 51 54 imbi12d x=yφxABWφyAy/xBy/xW
56 49 55 2 chvarfv φyAy/xBy/xW
57 56 adantlr φxAyAy/xBy/xW
58 46 8 nfmpt _xky/xBC
59 nfcv _x0+∞
60 58 46 59 nff xky/xBC:y/xB0+∞
61 45 60 nfim xφyAky/xBC:y/xB0+∞
62 52 mpteq1d x=ykBC=ky/xBC
63 62 52 feq12d x=ykBC:B0+∞ky/xBC:y/xB0+∞
64 51 63 imbi12d x=yφxAkBC:B0+∞φyAky/xBC:y/xB0+∞
65 24 imp31 φxAkBC0+∞
66 eqid kBC=kBC
67 65 66 fmptd φxAkBC:B0+∞
68 61 64 67 chvarfv φyAky/xBC:y/xB0+∞
69 68 adantlr φxAyAky/xBC:y/xB0+∞
70 57 69 sge0cl φxAyAsum^ky/xBC0+∞
71 nfcv _ysum^kBC
72 6 58 nffv _xsum^ky/xBC
73 62 fveq2d x=ysum^kBC=sum^ky/xBC
74 71 72 73 cbvmpt xAsum^kBC=yAsum^ky/xBC
75 70 74 fmptd φxAxAsum^kBC:A0+∞
76 75 3adant3 φxAsum^kBC=+∞xAsum^kBC:A0+∞
77 id xAxA
78 fvexd xAsum^kBCV
79 eqid xAsum^kBC=xAsum^kBC
80 79 elrnmpt1 xAsum^kBCVsum^kBCranxAsum^kBC
81 77 78 80 syl2anc xAsum^kBCranxAsum^kBC
82 81 adantr xAsum^kBC=+∞sum^kBCranxAsum^kBC
83 34 82 eqeltrd xAsum^kBC=+∞+∞ranxAsum^kBC
84 83 3adant1 φxAsum^kBC=+∞+∞ranxAsum^kBC
85 44 76 84 sge0pnfval φxAsum^kBC=+∞sum^xAsum^kBC=+∞
86 43 85 eqtr4d φxAsum^kBC=+∞sum^kxABC=sum^xAsum^kBC
87 86 3exp φxAsum^kBC=+∞sum^kxABC=sum^xAsum^kBC
88 5 13 87 rexlimd φxAsum^kBC=+∞sum^kxABC=sum^xAsum^kBC
89 88 imp φxAsum^kBC=+∞sum^kxABC=sum^xAsum^kBC
90 simpl φ¬xAsum^kBC=+∞φ
91 ralnex xA¬sum^kBC=+∞¬xAsum^kBC=+∞
92 df-ne sum^kBC+∞¬sum^kBC=+∞
93 92 bicomi ¬sum^kBC=+∞sum^kBC+∞
94 93 ralbii xA¬sum^kBC=+∞xAsum^kBC+∞
95 91 94 sylbb1 ¬xAsum^kBC=+∞xAsum^kBC+∞
96 95 adantl φ¬xAsum^kBC=+∞xAsum^kBC+∞
97 1 adantr φxAsum^kBC+∞AV
98 nfcv _xW
99 46 98 nfel xy/xBW
100 45 99 nfim xφyAy/xBW
101 52 eleq1d x=yBWy/xBW
102 51 101 imbi12d x=yφxABWφyAy/xBW
103 100 102 2 chvarfv φyAy/xBW
104 103 adantlr φxAsum^kBC+∞yAy/xBW
105 nfcv _yB
106 105 46 52 cbvdisj DisjxABDisjyAy/xB
107 3 106 sylib φDisjyAy/xB
108 107 adantr φxAsum^kBC+∞DisjyAy/xB
109 nfv kφyAjy/xB
110 nfcsb1v _kj/kC
111 110 nfel1 kj/kC0+∞
112 109 111 nfim kφyAjy/xBj/kC0+∞
113 eleq1w k=jky/xBjy/xB
114 113 3anbi3d k=jφyAky/xBφyAjy/xB
115 csbeq1a k=jC=j/kC
116 115 eleq1d k=jC0+∞j/kC0+∞
117 114 116 imbi12d k=jφyAky/xBC0+∞φyAjy/xBj/kC0+∞
118 nfv xyA
119 20 46 nfel xky/xB
120 5 118 119 nf3an xφyAky/xB
121 120 23 nfim xφyAky/xBC0+∞
122 52 eleq2d x=ykBky/xB
123 50 122 3anbi23d x=yφxAkBφyAky/xB
124 123 imbi1d x=yφxAkBC0+∞φyAky/xBC0+∞
125 121 124 4 chvarfv φyAky/xBC0+∞
126 112 117 125 chvarfv φyAjy/xBj/kC0+∞
127 126 3adant1r φxAsum^kBC+∞yAjy/xBj/kC0+∞
128 simpr xAsum^kBC+∞yAyA
129 simpl xAsum^kBC+∞yAxAsum^kBC+∞
130 simpl yAxAsum^kBC+∞yA
131 simpr yAxAsum^kBC+∞xAsum^kBC+∞
132 nfcv _xj/kC
133 46 132 nfmpt _xjy/xBj/kC
134 6 133 nffv _xsum^jy/xBj/kC
135 nfcv _x+∞
136 134 135 nfne xsum^jy/xBj/kC+∞
137 nfcv _jC
138 137 110 115 cbvmpt ky/xBC=jy/xBj/kC
139 138 a1i x=yky/xBC=jy/xBj/kC
140 62 139 eqtrd x=ykBC=jy/xBj/kC
141 140 fveq2d x=ysum^kBC=sum^jy/xBj/kC
142 141 neeq1d x=ysum^kBC+∞sum^jy/xBj/kC+∞
143 136 142 rspc yAxAsum^kBC+∞sum^jy/xBj/kC+∞
144 130 131 143 sylc yAxAsum^kBC+∞sum^jy/xBj/kC+∞
145 128 129 144 syl2anc xAsum^kBC+∞yAsum^jy/xBj/kC+∞
146 145 neneqd xAsum^kBC+∞yA¬sum^jy/xBj/kC=+∞
147 146 adantll φxAsum^kBC+∞yA¬sum^jy/xBj/kC=+∞
148 126 3expa φyAjy/xBj/kC0+∞
149 eqid jy/xBj/kC=jy/xBj/kC
150 148 149 fmptd φyAjy/xBj/kC:y/xB0+∞
151 150 adantlr φxAsum^kBC+∞yAjy/xBj/kC:y/xB0+∞
152 104 151 sge0repnf φxAsum^kBC+∞yAsum^jy/xBj/kC¬sum^jy/xBj/kC=+∞
153 147 152 mpbird φxAsum^kBC+∞yAsum^jy/xBj/kC
154 137 110 115 cbvmpt kxABC=jxABj/kC
155 105 46 52 cbviun xAB=yAy/xB
156 155 mpteq1i jxABj/kC=jyAy/xBj/kC
157 154 156 eqtri kxABC=jyAy/xBj/kC
158 157 fveq2i sum^kxABC=sum^jyAy/xBj/kC
159 158 30 eqeltrrid φsum^jyAy/xBj/kC*
160 159 adantr φxAsum^kBC+∞sum^jyAy/xBj/kC*
161 71 134 141 cbvmpt xAsum^kBC=yAsum^jy/xBj/kC
162 161 fveq2i sum^xAsum^kBC=sum^yAsum^jy/xBj/kC
163 2 67 sge0cl φxAsum^kBC0+∞
164 163 79 fmptd φxAsum^kBC:A0+∞
165 1 164 sge0xrcl φsum^xAsum^kBC*
166 162 165 eqeltrrid φsum^yAsum^jy/xBj/kC*
167 166 adantr φxAsum^kBC+∞sum^yAsum^jy/xBj/kC*
168 eliun jyAy/xByAjy/xB
169 168 biimpi jyAy/xByAjy/xB
170 169 adantl φjyAy/xByAjy/xB
171 nfv yφ
172 nfcv _yj
173 nfiu1 _yyAy/xB
174 172 173 nfel yjyAy/xB
175 171 174 nfan yφjyAy/xB
176 nfv yj/kC0+∞
177 148 exp31 φyAjy/xBj/kC0+∞
178 177 adantr φjyAy/xByAjy/xBj/kC0+∞
179 175 176 178 rexlimd φjyAy/xByAjy/xBj/kC0+∞
180 170 179 mpd φjyAy/xBj/kC0+∞
181 eqid jyAy/xBj/kC=jyAy/xBj/kC
182 180 181 fmptd φjyAy/xBj/kC:yAy/xB0+∞
183 182 adantr φxAsum^kBC+∞jyAy/xBj/kC:yAy/xB0+∞
184 155 16 eqeltrrid φyAy/xBV
185 184 adantr φxAsum^kBC+∞yAy/xBV
186 97 104 108 127 153 160 167 183 185 sge0iunmptlemre φxAsum^kBC+∞sum^jyAy/xBj/kC=sum^yAsum^jy/xBj/kC
187 158 a1i φxAsum^kBC+∞sum^kxABC=sum^jyAy/xBj/kC
188 162 a1i φxAsum^kBC+∞sum^xAsum^kBC=sum^yAsum^jy/xBj/kC
189 186 187 188 3eqtr4d φxAsum^kBC+∞sum^kxABC=sum^xAsum^kBC
190 90 96 189 syl2anc φ¬xAsum^kBC=+∞sum^kxABC=sum^xAsum^kBC
191 89 190 pm2.61dan φsum^kxABC=sum^xAsum^kBC