Metamath Proof Explorer


Theorem sge0sn

Description: A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0sn.1 φAV
sge0sn.2 φF:A0+∞
Assertion sge0sn φsum^F=FA

Proof

Step Hyp Ref Expression
1 sge0sn.1 φAV
2 sge0sn.2 φF:A0+∞
3 snex AV
4 3 a1i φFA=+∞AV
5 2 adantr φFA=+∞F:A0+∞
6 id FA=+∞FA=+∞
7 6 eqcomd FA=+∞+∞=FA
8 7 adantl φFA=+∞+∞=FA
9 2 ffund φFunF
10 9 adantr φFA=+∞FunF
11 snidg AVAA
12 1 11 syl φAA
13 2 fdmd φdomF=A
14 13 eqcomd φA=domF
15 12 14 eleqtrd φAdomF
16 15 adantr φFA=+∞AdomF
17 fvelrn FunFAdomFFAranF
18 10 16 17 syl2anc φFA=+∞FAranF
19 8 18 eqeltrd φFA=+∞+∞ranF
20 4 5 19 sge0pnfval φFA=+∞sum^F=+∞
21 simpr φFA=+∞FA=+∞
22 20 21 eqtr4d φFA=+∞sum^F=FA
23 3 a1i φ¬FA=+∞AV
24 2 adantr φ¬FA=+∞F:A0+∞
25 elsni +∞FA+∞=FA
26 25 eqcomd +∞FAFA=+∞
27 26 con3i ¬FA=+∞¬+∞FA
28 27 adantl φ¬FA=+∞¬+∞FA
29 1 2 rnsnf φranF=FA
30 29 eqcomd φFA=ranF
31 30 adantr φ¬FA=+∞FA=ranF
32 28 31 neleqtrd φ¬FA=+∞¬+∞ranF
33 24 32 fge0iccico φ¬FA=+∞F:A0+∞
34 23 33 sge0reval φ¬FA=+∞sum^F=supranx𝒫AFinyxFy*<
35 sum0 yFy=0
36 35 eqcomi 0=yFy
37 36 a1i φ¬FA=+∞0=yFy
38 nfcvd φ¬FA=+∞_yFA
39 nfv yφ¬FA=+∞
40 fveq2 y=AFy=FA
41 40 adantl φ¬FA=+∞y=AFy=FA
42 1 adantr φ¬FA=+∞AV
43 rge0ssre 0+∞
44 ax-resscn
45 43 44 sstri 0+∞
46 42 11 syl φ¬FA=+∞AA
47 33 46 ffvelcdmd φ¬FA=+∞FA0+∞
48 45 47 sselid φ¬FA=+∞FA
49 38 39 41 42 48 sumsnd φ¬FA=+∞yAFy=FA
50 49 eqcomd φ¬FA=+∞FA=yAFy
51 37 50 preq12d φ¬FA=+∞0FA=yFyyAFy
52 51 supeq1d φ¬FA=+∞sup0FA*<=supyFyyAFy*<
53 xrltso <Or*
54 53 a1i φ<Or*
55 0xr 0*
56 55 a1i φ0*
57 iccssxr 0+∞*
58 2 12 ffvelcdmd φFA0+∞
59 57 58 sselid φFA*
60 suppr <Or*0*FA*sup0FA*<=ifFA<00FA
61 54 56 59 60 syl3anc φsup0FA*<=ifFA<00FA
62 pnfxr +∞*
63 62 a1i φ+∞*
64 56 63 58 3jca φ0*+∞*FA0+∞
65 iccgelb 0*+∞*FA0+∞0FA
66 64 65 syl φ0FA
67 56 59 xrlenltd φ0FA¬FA<0
68 66 67 mpbid φ¬FA<0
69 68 iffalsed φifFA<00FA=FA
70 61 69 eqtr2d φFA=sup0FA*<
71 70 adantr φ¬FA=+∞FA=sup0FA*<
72 pwsn 𝒫A=A
73 72 ineq1i 𝒫AFin=AFin
74 0fin Fin
75 snfi AFin
76 prssi FinAFinAFin
77 74 75 76 mp2an AFin
78 df-ss AFinAFin=A
79 78 biimpi AFinAFin=A
80 77 79 ax-mp AFin=A
81 73 80 eqtri 𝒫AFin=A
82 mpteq1 𝒫AFin=Ax𝒫AFinyxFy=xAyxFy
83 81 82 ax-mp x𝒫AFinyxFy=xAyxFy
84 0ex V
85 84 a1i V
86 3 a1i AV
87 sumex yFyV
88 87 a1i yFyV
89 sumex yAFyV
90 89 a1i yAFyV
91 sumeq1 x=yxFy=yFy
92 91 adantl x=yxFy=yFy
93 sumeq1 x=AyxFy=yAFy
94 93 adantl x=AyxFy=yAFy
95 85 86 88 90 92 94 fmptpr yFyAyAFy=xAyxFy
96 95 mptru yFyAyAFy=xAyxFy
97 96 eqcomi xAyxFy=yFyAyAFy
98 83 97 eqtri x𝒫AFinyxFy=yFyAyAFy
99 98 rneqi ranx𝒫AFinyxFy=ranyFyAyAFy
100 rnpropg VAVranyFyAyAFy=yFyyAFy
101 84 3 100 mp2an ranyFyAyAFy=yFyyAFy
102 99 101 eqtri ranx𝒫AFinyxFy=yFyyAFy
103 102 supeq1i supranx𝒫AFinyxFy*<=supyFyyAFy*<
104 103 a1i φ¬FA=+∞supranx𝒫AFinyxFy*<=supyFyyAFy*<
105 52 71 104 3eqtr4d φ¬FA=+∞FA=supranx𝒫AFinyxFy*<
106 34 105 eqtr4d φ¬FA=+∞sum^F=FA
107 22 106 pm2.61dan φsum^F=FA