| Step | Hyp | Ref | Expression | 
						
							| 1 |  | subgdprd.1 |  | 
						
							| 2 |  | reldmdprd |  | 
						
							| 3 | 2 | brrelex2i |  | 
						
							| 4 | 3 | a1i |  | 
						
							| 5 | 2 | brrelex2i |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 |  | ffvelcdm |  | 
						
							| 9 | 8 | ad2ant2lr |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 10 | subgss |  | 
						
							| 12 | 9 11 | syl |  | 
						
							| 13 | 1 | subgbas |  | 
						
							| 14 | 13 | ad2antrr |  | 
						
							| 15 | 12 14 | sseqtrrd |  | 
						
							| 16 | 15 | biantrud |  | 
						
							| 17 |  | simpll |  | 
						
							| 18 |  | simplr |  | 
						
							| 19 |  | eldifi |  | 
						
							| 20 | 19 | ad2antll |  | 
						
							| 21 | 18 20 | ffvelcdmd |  | 
						
							| 22 | 10 | subgss |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 | 23 14 | sseqtrrd |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 1 25 26 | resscntz |  | 
						
							| 28 | 17 24 27 | syl2anc |  | 
						
							| 29 | 28 | sseq2d |  | 
						
							| 30 |  | ssin |  | 
						
							| 31 | 29 30 | bitr4di |  | 
						
							| 32 | 16 31 | bitr4d |  | 
						
							| 33 | 32 | anassrs |  | 
						
							| 34 | 33 | ralbidva |  | 
						
							| 35 |  | subgrcl |  | 
						
							| 36 | 35 | ad2antrr |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 37 | subgacs |  | 
						
							| 39 |  | acsmre |  | 
						
							| 40 | 36 38 39 | 3syl |  | 
						
							| 41 | 1 | subggrp |  | 
						
							| 42 | 41 | ad2antrr |  | 
						
							| 43 | 10 | subgacs |  | 
						
							| 44 |  | acsmre |  | 
						
							| 45 | 42 43 44 | 3syl |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | imassrn |  | 
						
							| 48 |  | frn |  | 
						
							| 49 | 48 | ad2antlr |  | 
						
							| 50 | 47 49 | sstrid |  | 
						
							| 51 |  | mresspw |  | 
						
							| 52 | 45 51 | syl |  | 
						
							| 53 | 50 52 | sstrd |  | 
						
							| 54 |  | sspwuni |  | 
						
							| 55 | 53 54 | sylib |  | 
						
							| 56 | 45 46 55 | mrcssidd |  | 
						
							| 57 | 46 | mrccl |  | 
						
							| 58 | 45 55 57 | syl2anc |  | 
						
							| 59 | 1 | subsubg |  | 
						
							| 60 | 59 | ad2antrr |  | 
						
							| 61 | 58 60 | mpbid |  | 
						
							| 62 | 61 | simpld |  | 
						
							| 63 |  | eqid |  | 
						
							| 64 | 63 | mrcsscl |  | 
						
							| 65 | 40 56 62 64 | syl3anc |  | 
						
							| 66 | 13 | ad2antrr |  | 
						
							| 67 | 55 66 | sseqtrrd |  | 
						
							| 68 | 37 | subgss |  | 
						
							| 69 | 68 | ad2antrr |  | 
						
							| 70 | 67 69 | sstrd |  | 
						
							| 71 | 40 63 70 | mrcssidd |  | 
						
							| 72 | 63 | mrccl |  | 
						
							| 73 | 40 70 72 | syl2anc |  | 
						
							| 74 |  | simpll |  | 
						
							| 75 | 63 | mrcsscl |  | 
						
							| 76 | 40 67 74 75 | syl3anc |  | 
						
							| 77 | 1 | subsubg |  | 
						
							| 78 | 77 | ad2antrr |  | 
						
							| 79 | 73 76 78 | mpbir2and |  | 
						
							| 80 | 46 | mrcsscl |  | 
						
							| 81 | 45 71 79 80 | syl3anc |  | 
						
							| 82 | 65 81 | eqssd |  | 
						
							| 83 | 82 | ineq2d |  | 
						
							| 84 |  | eqid |  | 
						
							| 85 | 1 84 | subg0 |  | 
						
							| 86 | 85 | ad2antrr |  | 
						
							| 87 | 86 | sneqd |  | 
						
							| 88 | 83 87 | eqeq12d |  | 
						
							| 89 | 34 88 | anbi12d |  | 
						
							| 90 | 89 | ralbidva |  | 
						
							| 91 | 90 | pm5.32da |  | 
						
							| 92 | 1 | subsubg |  | 
						
							| 93 |  | elin |  | 
						
							| 94 |  | velpw |  | 
						
							| 95 | 94 | anbi2i |  | 
						
							| 96 | 93 95 | bitri |  | 
						
							| 97 | 92 96 | bitr4di |  | 
						
							| 98 | 97 | eqrdv |  | 
						
							| 99 | 98 | sseq2d |  | 
						
							| 100 |  | ssin |  | 
						
							| 101 | 99 100 | bitr4di |  | 
						
							| 102 | 101 | anbi2d |  | 
						
							| 103 |  | df-f |  | 
						
							| 104 |  | df-f |  | 
						
							| 105 | 104 | anbi1i |  | 
						
							| 106 |  | anass |  | 
						
							| 107 | 105 106 | bitri |  | 
						
							| 108 | 102 103 107 | 3bitr4g |  | 
						
							| 109 | 108 | anbi1d |  | 
						
							| 110 | 91 109 | bitr3d |  | 
						
							| 111 | 110 | adantr |  | 
						
							| 112 |  | dmexg |  | 
						
							| 113 | 112 | adantl |  | 
						
							| 114 |  | eqidd |  | 
						
							| 115 | 41 | adantr |  | 
						
							| 116 |  | eqid |  | 
						
							| 117 | 26 116 46 | dmdprd |  | 
						
							| 118 |  | 3anass |  | 
						
							| 119 | 117 118 | bitrdi |  | 
						
							| 120 | 119 | baibd |  | 
						
							| 121 | 113 114 115 120 | syl21anc |  | 
						
							| 122 | 35 | adantr |  | 
						
							| 123 | 25 84 63 | dmdprd |  | 
						
							| 124 |  | 3anass |  | 
						
							| 125 | 123 124 | bitrdi |  | 
						
							| 126 | 125 | baibd |  | 
						
							| 127 | 113 114 122 126 | syl21anc |  | 
						
							| 128 | 127 | anbi1d |  | 
						
							| 129 |  | an32 |  | 
						
							| 130 | 128 129 | bitrdi |  | 
						
							| 131 | 111 121 130 | 3bitr4d |  | 
						
							| 132 | 131 | ex |  | 
						
							| 133 | 4 7 132 | pm5.21ndd |  |