Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Internal direct products
subgdmdprd
Next ⟩
subgdprd
Metamath Proof Explorer
Ascii
Unicode
Theorem
subgdmdprd
Description:
A direct product in a subgroup.
(Contributed by
Mario Carneiro
, 27-Apr-2016)
Ref
Expression
Hypothesis
subgdprd.1
⊢
H
=
G
↾
𝑠
A
Assertion
subgdmdprd
⊢
A
∈
SubGrp
G
→
H
dom
DProd
S
↔
G
dom
DProd
S
∧
ran
S
⊆
𝒫
A
Proof
Step
Hyp
Ref
Expression
1
subgdprd.1
⊢
H
=
G
↾
𝑠
A
2
reldmdprd
⊢
Rel
dom
DProd
3
2
brrelex2i
⊢
H
dom
DProd
S
→
S
∈
V
4
3
a1i
⊢
A
∈
SubGrp
G
→
H
dom
DProd
S
→
S
∈
V
5
2
brrelex2i
⊢
G
dom
DProd
S
→
S
∈
V
6
5
adantr
⊢
G
dom
DProd
S
∧
ran
S
⊆
𝒫
A
→
S
∈
V
7
6
a1i
⊢
A
∈
SubGrp
G
→
G
dom
DProd
S
∧
ran
S
⊆
𝒫
A
→
S
∈
V
8
ffvelcdm
⊢
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
S
x
∈
SubGrp
H
9
8
ad2ant2lr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
x
∈
SubGrp
H
10
eqid
⊢
Base
H
=
Base
H
11
10
subgss
⊢
S
x
∈
SubGrp
H
→
S
x
⊆
Base
H
12
9
11
syl
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
x
⊆
Base
H
13
1
subgbas
⊢
A
∈
SubGrp
G
→
A
=
Base
H
14
13
ad2antrr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
A
=
Base
H
15
12
14
sseqtrrd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
x
⊆
A
16
15
biantrud
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
x
⊆
Cntz
G
S
y
↔
S
x
⊆
Cntz
G
S
y
∧
S
x
⊆
A
17
simpll
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
A
∈
SubGrp
G
18
simplr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
:
dom
S
⟶
SubGrp
H
19
eldifi
⊢
y
∈
dom
S
∖
x
→
y
∈
dom
S
20
19
ad2antll
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
y
∈
dom
S
21
18
20
ffvelcdmd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
y
∈
SubGrp
H
22
10
subgss
⊢
S
y
∈
SubGrp
H
→
S
y
⊆
Base
H
23
21
22
syl
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
y
⊆
Base
H
24
23
14
sseqtrrd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
y
⊆
A
25
eqid
⊢
Cntz
G
=
Cntz
G
26
eqid
⊢
Cntz
H
=
Cntz
H
27
1
25
26
resscntz
⊢
A
∈
SubGrp
G
∧
S
y
⊆
A
→
Cntz
H
S
y
=
Cntz
G
S
y
∩
A
28
17
24
27
syl2anc
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
Cntz
H
S
y
=
Cntz
G
S
y
∩
A
29
28
sseq2d
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
x
⊆
Cntz
H
S
y
↔
S
x
⊆
Cntz
G
S
y
∩
A
30
ssin
⊢
S
x
⊆
Cntz
G
S
y
∧
S
x
⊆
A
↔
S
x
⊆
Cntz
G
S
y
∩
A
31
29
30
bitr4di
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
x
⊆
Cntz
H
S
y
↔
S
x
⊆
Cntz
G
S
y
∧
S
x
⊆
A
32
16
31
bitr4d
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
x
⊆
Cntz
G
S
y
↔
S
x
⊆
Cntz
H
S
y
33
32
anassrs
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
∧
y
∈
dom
S
∖
x
→
S
x
⊆
Cntz
G
S
y
↔
S
x
⊆
Cntz
H
S
y
34
33
ralbidva
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
↔
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
35
subgrcl
⊢
A
∈
SubGrp
G
→
G
∈
Grp
36
35
ad2antrr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
G
∈
Grp
37
eqid
⊢
Base
G
=
Base
G
38
37
subgacs
⊢
G
∈
Grp
→
SubGrp
G
∈
ACS
Base
G
39
acsmre
⊢
SubGrp
G
∈
ACS
Base
G
→
SubGrp
G
∈
Moore
Base
G
40
36
38
39
3syl
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
SubGrp
G
∈
Moore
Base
G
41
1
subggrp
⊢
A
∈
SubGrp
G
→
H
∈
Grp
42
41
ad2antrr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
H
∈
Grp
43
10
subgacs
⊢
H
∈
Grp
→
SubGrp
H
∈
ACS
Base
H
44
acsmre
⊢
SubGrp
H
∈
ACS
Base
H
→
SubGrp
H
∈
Moore
Base
H
45
42
43
44
3syl
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
SubGrp
H
∈
Moore
Base
H
46
eqid
⊢
mrCls
SubGrp
H
=
mrCls
SubGrp
H
47
imassrn
⊢
S
dom
S
∖
x
⊆
ran
S
48
frn
⊢
S
:
dom
S
⟶
SubGrp
H
→
ran
S
⊆
SubGrp
H
49
48
ad2antlr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
ran
S
⊆
SubGrp
H
50
47
49
sstrid
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
S
dom
S
∖
x
⊆
SubGrp
H
51
mresspw
⊢
SubGrp
H
∈
Moore
Base
H
→
SubGrp
H
⊆
𝒫
Base
H
52
45
51
syl
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
SubGrp
H
⊆
𝒫
Base
H
53
50
52
sstrd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
S
dom
S
∖
x
⊆
𝒫
Base
H
54
sspwuni
⊢
S
dom
S
∖
x
⊆
𝒫
Base
H
↔
⋃
S
dom
S
∖
x
⊆
Base
H
55
53
54
sylib
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
⋃
S
dom
S
∖
x
⊆
Base
H
56
45
46
55
mrcssidd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
⋃
S
dom
S
∖
x
⊆
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
57
46
mrccl
⊢
SubGrp
H
∈
Moore
Base
H
∧
⋃
S
dom
S
∖
x
⊆
Base
H
→
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∈
SubGrp
H
58
45
55
57
syl2anc
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∈
SubGrp
H
59
1
subsubg
⊢
A
∈
SubGrp
G
→
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∈
SubGrp
H
↔
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∈
SubGrp
G
∧
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
⊆
A
60
59
ad2antrr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∈
SubGrp
H
↔
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∈
SubGrp
G
∧
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
⊆
A
61
58
60
mpbid
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∈
SubGrp
G
∧
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
⊆
A
62
61
simpld
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∈
SubGrp
G
63
eqid
⊢
mrCls
SubGrp
G
=
mrCls
SubGrp
G
64
63
mrcsscl
⊢
SubGrp
G
∈
Moore
Base
G
∧
⋃
S
dom
S
∖
x
⊆
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∧
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
∈
SubGrp
G
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
⊆
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
65
40
56
62
64
syl3anc
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
⊆
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
66
13
ad2antrr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
A
=
Base
H
67
55
66
sseqtrrd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
⋃
S
dom
S
∖
x
⊆
A
68
37
subgss
⊢
A
∈
SubGrp
G
→
A
⊆
Base
G
69
68
ad2antrr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
A
⊆
Base
G
70
67
69
sstrd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
⋃
S
dom
S
∖
x
⊆
Base
G
71
40
63
70
mrcssidd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
⋃
S
dom
S
∖
x
⊆
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
72
63
mrccl
⊢
SubGrp
G
∈
Moore
Base
G
∧
⋃
S
dom
S
∖
x
⊆
Base
G
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
∈
SubGrp
G
73
40
70
72
syl2anc
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
∈
SubGrp
G
74
simpll
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
A
∈
SubGrp
G
75
63
mrcsscl
⊢
SubGrp
G
∈
Moore
Base
G
∧
⋃
S
dom
S
∖
x
⊆
A
∧
A
∈
SubGrp
G
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
⊆
A
76
40
67
74
75
syl3anc
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
⊆
A
77
1
subsubg
⊢
A
∈
SubGrp
G
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
∈
SubGrp
H
↔
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
∈
SubGrp
G
∧
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
⊆
A
78
77
ad2antrr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
∈
SubGrp
H
↔
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
∈
SubGrp
G
∧
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
⊆
A
79
73
76
78
mpbir2and
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
∈
SubGrp
H
80
46
mrcsscl
⊢
SubGrp
H
∈
Moore
Base
H
∧
⋃
S
dom
S
∖
x
⊆
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
∧
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
∈
SubGrp
H
→
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
⊆
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
81
45
71
79
80
syl3anc
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
⊆
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
82
65
81
eqssd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
83
82
ineq2d
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
84
eqid
⊢
0
G
=
0
G
85
1
84
subg0
⊢
A
∈
SubGrp
G
→
0
G
=
0
H
86
85
ad2antrr
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
0
G
=
0
H
87
86
sneqd
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
0
G
=
0
H
88
83
87
eqeq12d
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
↔
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
89
34
88
anbi12d
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
∧
x
∈
dom
S
→
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
↔
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
90
89
ralbidva
⊢
A
∈
SubGrp
G
∧
S
:
dom
S
⟶
SubGrp
H
→
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
↔
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
91
90
pm5.32da
⊢
A
∈
SubGrp
G
→
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
↔
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
92
1
subsubg
⊢
A
∈
SubGrp
G
→
x
∈
SubGrp
H
↔
x
∈
SubGrp
G
∧
x
⊆
A
93
elin
⊢
x
∈
SubGrp
G
∩
𝒫
A
↔
x
∈
SubGrp
G
∧
x
∈
𝒫
A
94
velpw
⊢
x
∈
𝒫
A
↔
x
⊆
A
95
94
anbi2i
⊢
x
∈
SubGrp
G
∧
x
∈
𝒫
A
↔
x
∈
SubGrp
G
∧
x
⊆
A
96
93
95
bitri
⊢
x
∈
SubGrp
G
∩
𝒫
A
↔
x
∈
SubGrp
G
∧
x
⊆
A
97
92
96
bitr4di
⊢
A
∈
SubGrp
G
→
x
∈
SubGrp
H
↔
x
∈
SubGrp
G
∩
𝒫
A
98
97
eqrdv
⊢
A
∈
SubGrp
G
→
SubGrp
H
=
SubGrp
G
∩
𝒫
A
99
98
sseq2d
⊢
A
∈
SubGrp
G
→
ran
S
⊆
SubGrp
H
↔
ran
S
⊆
SubGrp
G
∩
𝒫
A
100
ssin
⊢
ran
S
⊆
SubGrp
G
∧
ran
S
⊆
𝒫
A
↔
ran
S
⊆
SubGrp
G
∩
𝒫
A
101
99
100
bitr4di
⊢
A
∈
SubGrp
G
→
ran
S
⊆
SubGrp
H
↔
ran
S
⊆
SubGrp
G
∧
ran
S
⊆
𝒫
A
102
101
anbi2d
⊢
A
∈
SubGrp
G
→
S
Fn
dom
S
∧
ran
S
⊆
SubGrp
H
↔
S
Fn
dom
S
∧
ran
S
⊆
SubGrp
G
∧
ran
S
⊆
𝒫
A
103
df-f
⊢
S
:
dom
S
⟶
SubGrp
H
↔
S
Fn
dom
S
∧
ran
S
⊆
SubGrp
H
104
df-f
⊢
S
:
dom
S
⟶
SubGrp
G
↔
S
Fn
dom
S
∧
ran
S
⊆
SubGrp
G
105
104
anbi1i
⊢
S
:
dom
S
⟶
SubGrp
G
∧
ran
S
⊆
𝒫
A
↔
S
Fn
dom
S
∧
ran
S
⊆
SubGrp
G
∧
ran
S
⊆
𝒫
A
106
anass
⊢
S
Fn
dom
S
∧
ran
S
⊆
SubGrp
G
∧
ran
S
⊆
𝒫
A
↔
S
Fn
dom
S
∧
ran
S
⊆
SubGrp
G
∧
ran
S
⊆
𝒫
A
107
105
106
bitri
⊢
S
:
dom
S
⟶
SubGrp
G
∧
ran
S
⊆
𝒫
A
↔
S
Fn
dom
S
∧
ran
S
⊆
SubGrp
G
∧
ran
S
⊆
𝒫
A
108
102
103
107
3bitr4g
⊢
A
∈
SubGrp
G
→
S
:
dom
S
⟶
SubGrp
H
↔
S
:
dom
S
⟶
SubGrp
G
∧
ran
S
⊆
𝒫
A
109
108
anbi1d
⊢
A
∈
SubGrp
G
→
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
↔
S
:
dom
S
⟶
SubGrp
G
∧
ran
S
⊆
𝒫
A
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
110
91
109
bitr3d
⊢
A
∈
SubGrp
G
→
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
↔
S
:
dom
S
⟶
SubGrp
G
∧
ran
S
⊆
𝒫
A
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
111
110
adantr
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
↔
S
:
dom
S
⟶
SubGrp
G
∧
ran
S
⊆
𝒫
A
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
112
dmexg
⊢
S
∈
V
→
dom
S
∈
V
113
112
adantl
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
dom
S
∈
V
114
eqidd
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
dom
S
=
dom
S
115
41
adantr
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
H
∈
Grp
116
eqid
⊢
0
H
=
0
H
117
26
116
46
dmdprd
⊢
dom
S
∈
V
∧
dom
S
=
dom
S
→
H
dom
DProd
S
↔
H
∈
Grp
∧
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
118
3anass
⊢
H
∈
Grp
∧
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
↔
H
∈
Grp
∧
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
119
117
118
bitrdi
⊢
dom
S
∈
V
∧
dom
S
=
dom
S
→
H
dom
DProd
S
↔
H
∈
Grp
∧
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
120
119
baibd
⊢
dom
S
∈
V
∧
dom
S
=
dom
S
∧
H
∈
Grp
→
H
dom
DProd
S
↔
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
121
113
114
115
120
syl21anc
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
H
dom
DProd
S
↔
S
:
dom
S
⟶
SubGrp
H
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
H
S
y
∧
S
x
∩
mrCls
SubGrp
H
⋃
S
dom
S
∖
x
=
0
H
122
35
adantr
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
G
∈
Grp
123
25
84
63
dmdprd
⊢
dom
S
∈
V
∧
dom
S
=
dom
S
→
G
dom
DProd
S
↔
G
∈
Grp
∧
S
:
dom
S
⟶
SubGrp
G
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
124
3anass
⊢
G
∈
Grp
∧
S
:
dom
S
⟶
SubGrp
G
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
↔
G
∈
Grp
∧
S
:
dom
S
⟶
SubGrp
G
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
125
123
124
bitrdi
⊢
dom
S
∈
V
∧
dom
S
=
dom
S
→
G
dom
DProd
S
↔
G
∈
Grp
∧
S
:
dom
S
⟶
SubGrp
G
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
126
125
baibd
⊢
dom
S
∈
V
∧
dom
S
=
dom
S
∧
G
∈
Grp
→
G
dom
DProd
S
↔
S
:
dom
S
⟶
SubGrp
G
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
127
113
114
122
126
syl21anc
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
G
dom
DProd
S
↔
S
:
dom
S
⟶
SubGrp
G
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
128
127
anbi1d
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
G
dom
DProd
S
∧
ran
S
⊆
𝒫
A
↔
S
:
dom
S
⟶
SubGrp
G
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
∧
ran
S
⊆
𝒫
A
129
an32
⊢
S
:
dom
S
⟶
SubGrp
G
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
∧
ran
S
⊆
𝒫
A
↔
S
:
dom
S
⟶
SubGrp
G
∧
ran
S
⊆
𝒫
A
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
130
128
129
bitrdi
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
G
dom
DProd
S
∧
ran
S
⊆
𝒫
A
↔
S
:
dom
S
⟶
SubGrp
G
∧
ran
S
⊆
𝒫
A
∧
∀
x
∈
dom
S
∀
y
∈
dom
S
∖
x
S
x
⊆
Cntz
G
S
y
∧
S
x
∩
mrCls
SubGrp
G
⋃
S
dom
S
∖
x
=
0
G
131
111
121
130
3bitr4d
⊢
A
∈
SubGrp
G
∧
S
∈
V
→
H
dom
DProd
S
↔
G
dom
DProd
S
∧
ran
S
⊆
𝒫
A
132
131
ex
⊢
A
∈
SubGrp
G
→
S
∈
V
→
H
dom
DProd
S
↔
G
dom
DProd
S
∧
ran
S
⊆
𝒫
A
133
4
7
132
pm5.21ndd
⊢
A
∈
SubGrp
G
→
H
dom
DProd
S
↔
G
dom
DProd
S
∧
ran
S
⊆
𝒫
A