Metamath Proof Explorer


Theorem subgdmdprd

Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016)

Ref Expression
Hypothesis subgdprd.1 H=G𝑠A
Assertion subgdmdprd ASubGrpGHdomDProdSGdomDProdSranS𝒫A

Proof

Step Hyp Ref Expression
1 subgdprd.1 H=G𝑠A
2 reldmdprd ReldomDProd
3 2 brrelex2i HdomDProdSSV
4 3 a1i ASubGrpGHdomDProdSSV
5 2 brrelex2i GdomDProdSSV
6 5 adantr GdomDProdSranS𝒫ASV
7 6 a1i ASubGrpGGdomDProdSranS𝒫ASV
8 ffvelcdm S:domSSubGrpHxdomSSxSubGrpH
9 8 ad2ant2lr ASubGrpGS:domSSubGrpHxdomSydomSxSxSubGrpH
10 eqid BaseH=BaseH
11 10 subgss SxSubGrpHSxBaseH
12 9 11 syl ASubGrpGS:domSSubGrpHxdomSydomSxSxBaseH
13 1 subgbas ASubGrpGA=BaseH
14 13 ad2antrr ASubGrpGS:domSSubGrpHxdomSydomSxA=BaseH
15 12 14 sseqtrrd ASubGrpGS:domSSubGrpHxdomSydomSxSxA
16 15 biantrud ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzGSySxCntzGSySxA
17 simpll ASubGrpGS:domSSubGrpHxdomSydomSxASubGrpG
18 simplr ASubGrpGS:domSSubGrpHxdomSydomSxS:domSSubGrpH
19 eldifi ydomSxydomS
20 19 ad2antll ASubGrpGS:domSSubGrpHxdomSydomSxydomS
21 18 20 ffvelcdmd ASubGrpGS:domSSubGrpHxdomSydomSxSySubGrpH
22 10 subgss SySubGrpHSyBaseH
23 21 22 syl ASubGrpGS:domSSubGrpHxdomSydomSxSyBaseH
24 23 14 sseqtrrd ASubGrpGS:domSSubGrpHxdomSydomSxSyA
25 eqid CntzG=CntzG
26 eqid CntzH=CntzH
27 1 25 26 resscntz ASubGrpGSyACntzHSy=CntzGSyA
28 17 24 27 syl2anc ASubGrpGS:domSSubGrpHxdomSydomSxCntzHSy=CntzGSyA
29 28 sseq2d ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzHSySxCntzGSyA
30 ssin SxCntzGSySxASxCntzGSyA
31 29 30 bitr4di ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzHSySxCntzGSySxA
32 16 31 bitr4d ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzGSySxCntzHSy
33 32 anassrs ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzGSySxCntzHSy
34 33 ralbidva ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzGSyydomSxSxCntzHSy
35 subgrcl ASubGrpGGGrp
36 35 ad2antrr ASubGrpGS:domSSubGrpHxdomSGGrp
37 eqid BaseG=BaseG
38 37 subgacs GGrpSubGrpGACSBaseG
39 acsmre SubGrpGACSBaseGSubGrpGMooreBaseG
40 36 38 39 3syl ASubGrpGS:domSSubGrpHxdomSSubGrpGMooreBaseG
41 1 subggrp ASubGrpGHGrp
42 41 ad2antrr ASubGrpGS:domSSubGrpHxdomSHGrp
43 10 subgacs HGrpSubGrpHACSBaseH
44 acsmre SubGrpHACSBaseHSubGrpHMooreBaseH
45 42 43 44 3syl ASubGrpGS:domSSubGrpHxdomSSubGrpHMooreBaseH
46 eqid mrClsSubGrpH=mrClsSubGrpH
47 imassrn SdomSxranS
48 frn S:domSSubGrpHranSSubGrpH
49 48 ad2antlr ASubGrpGS:domSSubGrpHxdomSranSSubGrpH
50 47 49 sstrid ASubGrpGS:domSSubGrpHxdomSSdomSxSubGrpH
51 mresspw SubGrpHMooreBaseHSubGrpH𝒫BaseH
52 45 51 syl ASubGrpGS:domSSubGrpHxdomSSubGrpH𝒫BaseH
53 50 52 sstrd ASubGrpGS:domSSubGrpHxdomSSdomSx𝒫BaseH
54 sspwuni SdomSx𝒫BaseHSdomSxBaseH
55 53 54 sylib ASubGrpGS:domSSubGrpHxdomSSdomSxBaseH
56 45 46 55 mrcssidd ASubGrpGS:domSSubGrpHxdomSSdomSxmrClsSubGrpHSdomSx
57 46 mrccl SubGrpHMooreBaseHSdomSxBaseHmrClsSubGrpHSdomSxSubGrpH
58 45 55 57 syl2anc ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpHSdomSxSubGrpH
59 1 subsubg ASubGrpGmrClsSubGrpHSdomSxSubGrpHmrClsSubGrpHSdomSxSubGrpGmrClsSubGrpHSdomSxA
60 59 ad2antrr ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpHSdomSxSubGrpHmrClsSubGrpHSdomSxSubGrpGmrClsSubGrpHSdomSxA
61 58 60 mpbid ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpHSdomSxSubGrpGmrClsSubGrpHSdomSxA
62 61 simpld ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpHSdomSxSubGrpG
63 eqid mrClsSubGrpG=mrClsSubGrpG
64 63 mrcsscl SubGrpGMooreBaseGSdomSxmrClsSubGrpHSdomSxmrClsSubGrpHSdomSxSubGrpGmrClsSubGrpGSdomSxmrClsSubGrpHSdomSx
65 40 56 62 64 syl3anc ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpGSdomSxmrClsSubGrpHSdomSx
66 13 ad2antrr ASubGrpGS:domSSubGrpHxdomSA=BaseH
67 55 66 sseqtrrd ASubGrpGS:domSSubGrpHxdomSSdomSxA
68 37 subgss ASubGrpGABaseG
69 68 ad2antrr ASubGrpGS:domSSubGrpHxdomSABaseG
70 67 69 sstrd ASubGrpGS:domSSubGrpHxdomSSdomSxBaseG
71 40 63 70 mrcssidd ASubGrpGS:domSSubGrpHxdomSSdomSxmrClsSubGrpGSdomSx
72 63 mrccl SubGrpGMooreBaseGSdomSxBaseGmrClsSubGrpGSdomSxSubGrpG
73 40 70 72 syl2anc ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpGSdomSxSubGrpG
74 simpll ASubGrpGS:domSSubGrpHxdomSASubGrpG
75 63 mrcsscl SubGrpGMooreBaseGSdomSxAASubGrpGmrClsSubGrpGSdomSxA
76 40 67 74 75 syl3anc ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpGSdomSxA
77 1 subsubg ASubGrpGmrClsSubGrpGSdomSxSubGrpHmrClsSubGrpGSdomSxSubGrpGmrClsSubGrpGSdomSxA
78 77 ad2antrr ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpGSdomSxSubGrpHmrClsSubGrpGSdomSxSubGrpGmrClsSubGrpGSdomSxA
79 73 76 78 mpbir2and ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpGSdomSxSubGrpH
80 46 mrcsscl SubGrpHMooreBaseHSdomSxmrClsSubGrpGSdomSxmrClsSubGrpGSdomSxSubGrpHmrClsSubGrpHSdomSxmrClsSubGrpGSdomSx
81 45 71 79 80 syl3anc ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpHSdomSxmrClsSubGrpGSdomSx
82 65 81 eqssd ASubGrpGS:domSSubGrpHxdomSmrClsSubGrpGSdomSx=mrClsSubGrpHSdomSx
83 82 ineq2d ASubGrpGS:domSSubGrpHxdomSSxmrClsSubGrpGSdomSx=SxmrClsSubGrpHSdomSx
84 eqid 0G=0G
85 1 84 subg0 ASubGrpG0G=0H
86 85 ad2antrr ASubGrpGS:domSSubGrpHxdomS0G=0H
87 86 sneqd ASubGrpGS:domSSubGrpHxdomS0G=0H
88 83 87 eqeq12d ASubGrpGS:domSSubGrpHxdomSSxmrClsSubGrpGSdomSx=0GSxmrClsSubGrpHSdomSx=0H
89 34 88 anbi12d ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0GydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0H
90 89 ralbidva ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0GxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0H
91 90 pm5.32da ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0GS:domSSubGrpHxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0H
92 1 subsubg ASubGrpGxSubGrpHxSubGrpGxA
93 elin xSubGrpG𝒫AxSubGrpGx𝒫A
94 velpw x𝒫AxA
95 94 anbi2i xSubGrpGx𝒫AxSubGrpGxA
96 93 95 bitri xSubGrpG𝒫AxSubGrpGxA
97 92 96 bitr4di ASubGrpGxSubGrpHxSubGrpG𝒫A
98 97 eqrdv ASubGrpGSubGrpH=SubGrpG𝒫A
99 98 sseq2d ASubGrpGranSSubGrpHranSSubGrpG𝒫A
100 ssin ranSSubGrpGranS𝒫AranSSubGrpG𝒫A
101 99 100 bitr4di ASubGrpGranSSubGrpHranSSubGrpGranS𝒫A
102 101 anbi2d ASubGrpGSFndomSranSSubGrpHSFndomSranSSubGrpGranS𝒫A
103 df-f S:domSSubGrpHSFndomSranSSubGrpH
104 df-f S:domSSubGrpGSFndomSranSSubGrpG
105 104 anbi1i S:domSSubGrpGranS𝒫ASFndomSranSSubGrpGranS𝒫A
106 anass SFndomSranSSubGrpGranS𝒫ASFndomSranSSubGrpGranS𝒫A
107 105 106 bitri S:domSSubGrpGranS𝒫ASFndomSranSSubGrpGranS𝒫A
108 102 103 107 3bitr4g ASubGrpGS:domSSubGrpHS:domSSubGrpGranS𝒫A
109 108 anbi1d ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0GS:domSSubGrpGranS𝒫AxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
110 91 109 bitr3d ASubGrpGS:domSSubGrpHxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0HS:domSSubGrpGranS𝒫AxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
111 110 adantr ASubGrpGSVS:domSSubGrpHxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0HS:domSSubGrpGranS𝒫AxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
112 dmexg SVdomSV
113 112 adantl ASubGrpGSVdomSV
114 eqidd ASubGrpGSVdomS=domS
115 41 adantr ASubGrpGSVHGrp
116 eqid 0H=0H
117 26 116 46 dmdprd domSVdomS=domSHdomDProdSHGrpS:domSSubGrpHxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0H
118 3anass HGrpS:domSSubGrpHxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0HHGrpS:domSSubGrpHxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0H
119 117 118 bitrdi domSVdomS=domSHdomDProdSHGrpS:domSSubGrpHxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0H
120 119 baibd domSVdomS=domSHGrpHdomDProdSS:domSSubGrpHxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0H
121 113 114 115 120 syl21anc ASubGrpGSVHdomDProdSS:domSSubGrpHxdomSydomSxSxCntzHSySxmrClsSubGrpHSdomSx=0H
122 35 adantr ASubGrpGSVGGrp
123 25 84 63 dmdprd domSVdomS=domSGdomDProdSGGrpS:domSSubGrpGxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
124 3anass GGrpS:domSSubGrpGxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0GGGrpS:domSSubGrpGxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
125 123 124 bitrdi domSVdomS=domSGdomDProdSGGrpS:domSSubGrpGxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
126 125 baibd domSVdomS=domSGGrpGdomDProdSS:domSSubGrpGxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
127 113 114 122 126 syl21anc ASubGrpGSVGdomDProdSS:domSSubGrpGxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
128 127 anbi1d ASubGrpGSVGdomDProdSranS𝒫AS:domSSubGrpGxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0GranS𝒫A
129 an32 S:domSSubGrpGxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0GranS𝒫AS:domSSubGrpGranS𝒫AxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
130 128 129 bitrdi ASubGrpGSVGdomDProdSranS𝒫AS:domSSubGrpGranS𝒫AxdomSydomSxSxCntzGSySxmrClsSubGrpGSdomSx=0G
131 111 121 130 3bitr4d ASubGrpGSVHdomDProdSGdomDProdSranS𝒫A
132 131 ex ASubGrpGSVHdomDProdSGdomDProdSranS𝒫A
133 4 7 132 pm5.21ndd ASubGrpGHdomDProdSGdomDProdSranS𝒫A