Metamath Proof Explorer


Theorem suplesup

Description: If any element of A can be approximated from below by members of B , then the supremum of A is less than or equal to the supremum of B . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses suplesup.a φA
suplesup.b φB*
suplesup.c φxAy+zBxy<z
Assertion suplesup φsupA*<supB*<

Proof

Step Hyp Ref Expression
1 suplesup.a φA
2 suplesup.b φB*
3 suplesup.c φxAy+zBxy<z
4 ressxr *
5 1 4 sstrdi φA*
6 supxrcl A*supA*<*
7 5 6 syl φsupA*<*
8 7 adantr φsupA*<=+∞supA*<*
9 eqidd φsupA*<=+∞+∞=+∞
10 simpr φsupA*<=+∞supA*<=+∞
11 peano2re ww+1
12 11 adantl φsupA*<=+∞ww+1
13 5 adantr φsupA*<=+∞A*
14 supxrunb2 A*rxAr<xsupA*<=+∞
15 13 14 syl φsupA*<=+∞rxAr<xsupA*<=+∞
16 10 15 mpbird φsupA*<=+∞rxAr<x
17 16 adantr φsupA*<=+∞wrxAr<x
18 breq1 r=w+1r<xw+1<x
19 18 rexbidv r=w+1xAr<xxAw+1<x
20 19 rspcva w+1rxAr<xxAw+1<x
21 12 17 20 syl2anc φsupA*<=+∞wxAw+1<x
22 1rp 1+
23 22 a1i φxA1+
24 3 r19.21bi φxAy+zBxy<z
25 oveq2 y=1xy=x1
26 25 breq1d y=1xy<zx1<z
27 26 rexbidv y=1zBxy<zzBx1<z
28 27 rspcva 1+y+zBxy<zzBx1<z
29 23 24 28 syl2anc φxAzBx1<z
30 29 adantlr φwxAzBx1<z
31 30 3adant3 φwxAw+1<xzBx1<z
32 nfv zφwxAw+1<x
33 simp11r φwxAw+1<xzBx1<zw
34 4 33 sselid φwxAw+1<xzBx1<zw*
35 1 sselda φxAx
36 1red φxA1
37 35 36 resubcld φxAx1
38 37 adantlr φwxAx1
39 38 3adant3 φwxAw+1<xx1
40 39 3ad2ant1 φwxAw+1<xzBx1<zx1
41 4 40 sselid φwxAw+1<xzBx1<zx1*
42 2 sselda φzBz*
43 42 adantlr φwzBz*
44 43 3ad2antl1 φwxAw+1<xzBz*
45 44 3adant3 φwxAw+1<xzBx1<zz*
46 simp3 φwxAw+1<xw+1<x
47 simp1r φwxAw+1<xw
48 1red φwxAw+1<x1
49 35 adantlr φwxAx
50 49 3adant3 φwxAw+1<xx
51 47 48 50 ltaddsubd φwxAw+1<xw+1<xw<x1
52 46 51 mpbid φwxAw+1<xw<x1
53 52 3ad2ant1 φwxAw+1<xzBx1<zw<x1
54 simp3 φwxAw+1<xzBx1<zx1<z
55 34 41 45 53 54 xrlttrd φwxAw+1<xzBx1<zw<z
56 55 3exp φwxAw+1<xzBx1<zw<z
57 32 56 reximdai φwxAw+1<xzBx1<zzBw<z
58 31 57 mpd φwxAw+1<xzBw<z
59 58 3exp φwxAw+1<xzBw<z
60 59 adantlr φsupA*<=+∞wxAw+1<xzBw<z
61 60 rexlimdv φsupA*<=+∞wxAw+1<xzBw<z
62 21 61 mpd φsupA*<=+∞wzBw<z
63 4 a1i φ*
64 63 sselda φww*
65 64 ad2antrr φwzBw<zw*
66 43 adantr φwzBw<zz*
67 simpr φwzBw<zw<z
68 65 66 67 xrltled φwzBw<zwz
69 68 ex φwzBw<zwz
70 69 adantllr φsupA*<=+∞wzBw<zwz
71 70 reximdva φsupA*<=+∞wzBw<zzBwz
72 62 71 mpd φsupA*<=+∞wzBwz
73 72 ralrimiva φsupA*<=+∞wzBwz
74 supxrunb1 B*wzBwzsupB*<=+∞
75 2 74 syl φwzBwzsupB*<=+∞
76 75 adantr φsupA*<=+∞wzBwzsupB*<=+∞
77 73 76 mpbid φsupA*<=+∞supB*<=+∞
78 9 10 77 3eqtr4d φsupA*<=+∞supA*<=supB*<
79 8 78 xreqled φsupA*<=+∞supA*<supB*<
80 supeq1 A=supA*<=sup*<
81 xrsup0 sup*<=−∞
82 81 a1i A=sup*<=−∞
83 80 82 eqtrd A=supA*<=−∞
84 83 adantl φA=supA*<=−∞
85 supxrcl B*supB*<*
86 2 85 syl φsupB*<*
87 mnfle supB*<*−∞supB*<
88 86 87 syl φ−∞supB*<
89 88 adantr φA=−∞supB*<
90 84 89 eqbrtrd φA=supA*<supB*<
91 90 adantlr φ¬supA*<=+∞A=supA*<supB*<
92 simpll φ¬supA*<=+∞¬A=φ
93 1 adantr φ¬A=A
94 neqne ¬A=A
95 94 adantl φ¬A=A
96 supxrgtmnf AA−∞<supA*<
97 93 95 96 syl2anc φ¬A=−∞<supA*<
98 97 adantlr φ¬supA*<=+∞¬A=−∞<supA*<
99 simpr φ¬supA*<=+∞¬supA*<=+∞
100 simpl φ¬supA*<=+∞φ
101 nltpnft supA*<*supA*<=+∞¬supA*<<+∞
102 100 7 101 3syl φ¬supA*<=+∞supA*<=+∞¬supA*<<+∞
103 99 102 mtbid φ¬supA*<=+∞¬¬supA*<<+∞
104 notnotr ¬¬supA*<<+∞supA*<<+∞
105 103 104 syl φ¬supA*<=+∞supA*<<+∞
106 105 adantr φ¬supA*<=+∞¬A=supA*<<+∞
107 98 106 jca φ¬supA*<=+∞¬A=−∞<supA*<supA*<<+∞
108 92 7 syl φ¬supA*<=+∞¬A=supA*<*
109 xrrebnd supA*<*supA*<−∞<supA*<supA*<<+∞
110 108 109 syl φ¬supA*<=+∞¬A=supA*<−∞<supA*<supA*<<+∞
111 107 110 mpbird φ¬supA*<=+∞¬A=supA*<
112 nfv wφsupA*<
113 2 adantr φsupA*<B*
114 simpr φsupA*<supA*<
115 114 adantr φsupA*<w+supA*<
116 simpr φsupA*<w+w+
117 116 rphalfcld φsupA*<w+w2+
118 115 117 ltsubrpd φsupA*<w+supA*<w2<supA*<
119 5 ad2antrr φsupA*<w+A*
120 rpre w+w
121 2re 2
122 121 a1i w+2
123 2ne0 20
124 123 a1i w+20
125 120 122 124 redivcld w+w2
126 125 adantl φsupA*<w+w2
127 115 126 resubcld φsupA*<w+supA*<w2
128 4 127 sselid φsupA*<w+supA*<w2*
129 supxrlub A*supA*<w2*supA*<w2<supA*<xAsupA*<w2<x
130 119 128 129 syl2anc φsupA*<w+supA*<w2<supA*<xAsupA*<w2<x
131 118 130 mpbid φsupA*<w+xAsupA*<w2<x
132 rphalfcl w+w2+
133 132 3ad2ant2 φw+xAw2+
134 24 3adant2 φw+xAy+zBxy<z
135 oveq2 y=w2xy=xw2
136 135 breq1d y=w2xy<zxw2<z
137 136 rexbidv y=w2zBxy<zzBxw2<z
138 137 rspcva w2+y+zBxy<zzBxw2<z
139 133 134 138 syl2anc φw+xAzBxw2<z
140 139 ad5ant134 φsupA*<w+xAsupA*<w2<xzBxw2<z
141 recn supA*<supA*<
142 141 adantr supA*<w+supA*<
143 120 recnd w+w
144 143 adantl supA*<w+w
145 144 halfcld supA*<w+w2
146 142 145 145 subsub4d supA*<w+supA*<-w2-w2=supA*<w2+w2
147 143 2halvesd w+w2+w2=w
148 147 oveq2d w+supA*<w2+w2=supA*<w
149 148 adantl supA*<w+supA*<w2+w2=supA*<w
150 146 149 eqtr2d supA*<w+supA*<w=supA*<-w2-w2
151 150 adantll φsupA*<w+supA*<w=supA*<-w2-w2
152 151 adantr φsupA*<w+xAsupA*<w=supA*<-w2-w2
153 152 ad3antrrr φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<w=supA*<-w2-w2
154 127 126 resubcld φsupA*<w+supA*<-w2-w2
155 154 adantr φsupA*<w+xAsupA*<-w2-w2
156 155 ad3antrrr φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<-w2-w2
157 4 156 sselid φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<-w2-w2*
158 120 49 sylanl2 φw+xAx
159 125 ad2antlr φw+xAw2
160 158 159 resubcld φw+xAxw2
161 160 adantllr φsupA*<w+xAxw2
162 161 ad3antrrr φsupA*<w+xAsupA*<w2<xzBxw2<zxw2
163 4 162 sselid φsupA*<w+xAsupA*<w2<xzBxw2<zxw2*
164 simp-6l φsupA*<w+xAsupA*<w2<xzBxw2<zφ
165 simplr φsupA*<w+xAsupA*<w2<xzBxw2<zzB
166 164 165 42 syl2anc φsupA*<w+xAsupA*<w2<xzBxw2<zz*
167 simp-6r φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<
168 120 ad5antlr φsupA*<w+xAsupA*<w2<xzBxw2<zw
169 168 rehalfcld φsupA*<w+xAsupA*<w2<xzBxw2<zw2
170 167 169 resubcld φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<w2
171 simp-4r φsupA*<w+xAsupA*<w2<xzBxw2<zxA
172 164 171 35 syl2anc φsupA*<w+xAsupA*<w2<xzBxw2<zx
173 simpllr φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<w2<x
174 170 172 169 173 ltsub1dd φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<-w2-w2<xw2
175 simpr φsupA*<w+xAsupA*<w2<xzBxw2<zxw2<z
176 157 163 166 174 175 xrlttrd φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<-w2-w2<z
177 153 176 eqbrtrd φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<w<z
178 177 ex φsupA*<w+xAsupA*<w2<xzBxw2<zsupA*<w<z
179 178 reximdva φsupA*<w+xAsupA*<w2<xzBxw2<zzBsupA*<w<z
180 140 179 mpd φsupA*<w+xAsupA*<w2<xzBsupA*<w<z
181 180 rexlimdva2 φsupA*<w+xAsupA*<w2<xzBsupA*<w<z
182 131 181 mpd φsupA*<w+zBsupA*<w<z
183 112 113 114 182 supxrgere φsupA*<supA*<supB*<
184 92 111 183 syl2anc φ¬supA*<=+∞¬A=supA*<supB*<
185 91 184 pm2.61dan φ¬supA*<=+∞supA*<supB*<
186 79 185 pm2.61dan φsupA*<supB*<