Metamath Proof Explorer


Theorem taylply2

Description: The Taylor polynomial is a polynomial of degree (at most) N . This version of taylply shows that the coefficients of T are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses taylpfval.s φS
taylpfval.f φF:A
taylpfval.a φAS
taylpfval.n φN0
taylpfval.b φBdomSDnFN
taylpfval.t T=NSTaylFB
taylply2.1 φDSubRingfld
taylply2.2 φBD
taylply2.3 φk0NSDnFkBk!D
Assertion taylply2 φTPolyDdegTN

Proof

Step Hyp Ref Expression
1 taylpfval.s φS
2 taylpfval.f φF:A
3 taylpfval.a φAS
4 taylpfval.n φN0
5 taylpfval.b φBdomSDnFN
6 taylpfval.t T=NSTaylFB
7 taylply2.1 φDSubRingfld
8 taylply2.2 φBD
9 taylply2.3 φk0NSDnFkBk!D
10 1 2 3 4 5 6 taylpfval φT=xk=0NSDnFkBk!xBk
11 simpr φxx
12 cnex V
13 12 a1i φV
14 elpm2r VSF:AASF𝑝𝑚S
15 13 1 2 3 14 syl22anc φF𝑝𝑚S
16 dvnbss SF𝑝𝑚SN0domSDnFNdomF
17 1 15 4 16 syl3anc φdomSDnFNdomF
18 2 17 fssdmd φdomSDnFNA
19 recnprss SS
20 1 19 syl φS
21 3 20 sstrd φA
22 18 21 sstrd φdomSDnFN
23 22 5 sseldd φB
24 23 adantr φxB
25 11 24 subcld φxxB
26 df-idp Xp=I
27 mptresid I=xx
28 26 27 eqtri Xp=xx
29 28 a1i φXp=xx
30 fconstmpt ×B=xB
31 30 a1i φ×B=xB
32 13 11 24 29 31 offval2 φXpf×B=xxB
33 eqidd φyk=0NSDnFkBk!yk=yk=0NSDnFkBk!yk
34 oveq1 y=xByk=xBk
35 34 oveq2d y=xBSDnFkBk!yk=SDnFkBk!xBk
36 35 sumeq2sdv y=xBk=0NSDnFkBk!yk=k=0NSDnFkBk!xBk
37 25 32 33 36 fmptco φyk=0NSDnFkBk!ykXpf×B=xk=0NSDnFkBk!xBk
38 10 37 eqtr4d φT=yk=0NSDnFkBk!ykXpf×B
39 cnfldbas =Basefld
40 39 subrgss DSubRingfldD
41 7 40 syl φD
42 41 4 9 elplyd φyk=0NSDnFkBk!ykPolyD
43 cnfld1 1=1fld
44 43 subrg1cl DSubRingfld1D
45 7 44 syl φ1D
46 plyid D1DXpPolyD
47 41 45 46 syl2anc φXpPolyD
48 plyconst DBD×BPolyD
49 41 8 48 syl2anc φ×BPolyD
50 subrgsubg DSubRingfldDSubGrpfld
51 7 50 syl φDSubGrpfld
52 cnfldadd +=+fld
53 52 subgcl DSubGrpflduDvDu+vD
54 53 3expb DSubGrpflduDvDu+vD
55 51 54 sylan φuDvDu+vD
56 cnfldmul ×=fld
57 56 subrgmcl DSubRingflduDvDuvD
58 57 3expb DSubRingflduDvDuvD
59 7 58 sylan φuDvDuvD
60 ax-1cn 1
61 cnfldneg 1invgfld1=1
62 60 61 ax-mp invgfld1=1
63 eqid invgfld=invgfld
64 63 subginvcl DSubGrpfld1Dinvgfld1D
65 51 45 64 syl2anc φinvgfld1D
66 62 65 eqeltrrid φ1D
67 47 49 55 59 66 plysub φXpf×BPolyD
68 42 67 55 59 plyco φyk=0NSDnFkBk!ykXpf×BPolyD
69 38 68 eqeltrd φTPolyD
70 38 fveq2d φdegT=degyk=0NSDnFkBk!ykXpf×B
71 eqid degyk=0NSDnFkBk!yk=degyk=0NSDnFkBk!yk
72 eqid degXpf×B=degXpf×B
73 71 72 42 67 dgrco φdegyk=0NSDnFkBk!ykXpf×B=degyk=0NSDnFkBk!ykdegXpf×B
74 eqid Xpf×B=Xpf×B
75 74 plyremlem BXpf×BPolydegXpf×B=1Xpf×B-10=B
76 23 75 syl φXpf×BPolydegXpf×B=1Xpf×B-10=B
77 76 simp2d φdegXpf×B=1
78 77 oveq2d φdegyk=0NSDnFkBk!ykdegXpf×B=degyk=0NSDnFkBk!yk1
79 dgrcl yk=0NSDnFkBk!ykPolyDdegyk=0NSDnFkBk!yk0
80 42 79 syl φdegyk=0NSDnFkBk!yk0
81 80 nn0cnd φdegyk=0NSDnFkBk!yk
82 81 mulridd φdegyk=0NSDnFkBk!yk1=degyk=0NSDnFkBk!yk
83 78 82 eqtrd φdegyk=0NSDnFkBk!ykdegXpf×B=degyk=0NSDnFkBk!yk
84 70 73 83 3eqtrd φdegT=degyk=0NSDnFkBk!yk
85 1 adantr φk0NS
86 15 adantr φk0NF𝑝𝑚S
87 elfznn0 k0Nk0
88 87 adantl φk0Nk0
89 dvnf SF𝑝𝑚Sk0SDnFk:domSDnFk
90 85 86 88 89 syl3anc φk0NSDnFk:domSDnFk
91 simpr φk0Nk0N
92 dvn2bss SF𝑝𝑚Sk0NdomSDnFNdomSDnFk
93 85 86 91 92 syl3anc φk0NdomSDnFNdomSDnFk
94 5 adantr φk0NBdomSDnFN
95 93 94 sseldd φk0NBdomSDnFk
96 90 95 ffvelcdmd φk0NSDnFkB
97 88 faccld φk0Nk!
98 97 nncnd φk0Nk!
99 97 nnne0d φk0Nk!0
100 96 98 99 divcld φk0NSDnFkBk!
101 42 4 100 33 dgrle φdegyk=0NSDnFkBk!ykN
102 84 101 eqbrtrd φdegTN
103 69 102 jca φTPolyDdegTN