Metamath Proof Explorer


Theorem taylply2

Description: The Taylor polynomial is a polynomial of degree (at most) N . This version of taylply shows that the coefficients of T are in a subring of the complex numbers. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses taylpfval.s φ S
taylpfval.f φ F : A
taylpfval.a φ A S
taylpfval.n φ N 0
taylpfval.b φ B dom S D n F N
taylpfval.t T = N S Tayl F B
taylply2.1 φ D SubRing fld
taylply2.2 φ B D
taylply2.3 φ k 0 N S D n F k B k ! D
Assertion taylply2 φ T Poly D deg T N

Proof

Step Hyp Ref Expression
1 taylpfval.s φ S
2 taylpfval.f φ F : A
3 taylpfval.a φ A S
4 taylpfval.n φ N 0
5 taylpfval.b φ B dom S D n F N
6 taylpfval.t T = N S Tayl F B
7 taylply2.1 φ D SubRing fld
8 taylply2.2 φ B D
9 taylply2.3 φ k 0 N S D n F k B k ! D
10 1 2 3 4 5 6 taylpfval φ T = x k = 0 N S D n F k B k ! x B k
11 simpr φ x x
12 cnex V
13 12 a1i φ V
14 elpm2r V S F : A A S F 𝑝𝑚 S
15 13 1 2 3 14 syl22anc φ F 𝑝𝑚 S
16 dvnbss S F 𝑝𝑚 S N 0 dom S D n F N dom F
17 1 15 4 16 syl3anc φ dom S D n F N dom F
18 2 17 fssdmd φ dom S D n F N A
19 recnprss S S
20 1 19 syl φ S
21 3 20 sstrd φ A
22 18 21 sstrd φ dom S D n F N
23 22 5 sseldd φ B
24 23 adantr φ x B
25 11 24 subcld φ x x B
26 df-idp X p = I
27 mptresid I = x x
28 26 27 eqtri X p = x x
29 28 a1i φ X p = x x
30 fconstmpt × B = x B
31 30 a1i φ × B = x B
32 13 11 24 29 31 offval2 φ X p f × B = x x B
33 eqidd φ y k = 0 N S D n F k B k ! y k = y k = 0 N S D n F k B k ! y k
34 oveq1 y = x B y k = x B k
35 34 oveq2d y = x B S D n F k B k ! y k = S D n F k B k ! x B k
36 35 sumeq2sdv y = x B k = 0 N S D n F k B k ! y k = k = 0 N S D n F k B k ! x B k
37 25 32 33 36 fmptco φ y k = 0 N S D n F k B k ! y k X p f × B = x k = 0 N S D n F k B k ! x B k
38 10 37 eqtr4d φ T = y k = 0 N S D n F k B k ! y k X p f × B
39 cnfldbas = Base fld
40 39 subrgss D SubRing fld D
41 7 40 syl φ D
42 41 4 9 elplyd φ y k = 0 N S D n F k B k ! y k Poly D
43 cnfld1 1 = 1 fld
44 43 subrg1cl D SubRing fld 1 D
45 7 44 syl φ 1 D
46 plyid D 1 D X p Poly D
47 41 45 46 syl2anc φ X p Poly D
48 plyconst D B D × B Poly D
49 41 8 48 syl2anc φ × B Poly D
50 subrgsubg D SubRing fld D SubGrp fld
51 7 50 syl φ D SubGrp fld
52 cnfldadd + = + fld
53 52 subgcl D SubGrp fld u D v D u + v D
54 53 3expb D SubGrp fld u D v D u + v D
55 51 54 sylan φ u D v D u + v D
56 cnfldmul × = fld
57 56 subrgmcl D SubRing fld u D v D u v D
58 57 3expb D SubRing fld u D v D u v D
59 7 58 sylan φ u D v D u v D
60 ax-1cn 1
61 cnfldneg 1 inv g fld 1 = 1
62 60 61 ax-mp inv g fld 1 = 1
63 eqid inv g fld = inv g fld
64 63 subginvcl D SubGrp fld 1 D inv g fld 1 D
65 51 45 64 syl2anc φ inv g fld 1 D
66 62 65 eqeltrrid φ 1 D
67 47 49 55 59 66 plysub φ X p f × B Poly D
68 42 67 55 59 plyco φ y k = 0 N S D n F k B k ! y k X p f × B Poly D
69 38 68 eqeltrd φ T Poly D
70 38 fveq2d φ deg T = deg y k = 0 N S D n F k B k ! y k X p f × B
71 eqid deg y k = 0 N S D n F k B k ! y k = deg y k = 0 N S D n F k B k ! y k
72 eqid deg X p f × B = deg X p f × B
73 71 72 42 67 dgrco φ deg y k = 0 N S D n F k B k ! y k X p f × B = deg y k = 0 N S D n F k B k ! y k deg X p f × B
74 eqid X p f × B = X p f × B
75 74 plyremlem B X p f × B Poly deg X p f × B = 1 X p f × B -1 0 = B
76 23 75 syl φ X p f × B Poly deg X p f × B = 1 X p f × B -1 0 = B
77 76 simp2d φ deg X p f × B = 1
78 77 oveq2d φ deg y k = 0 N S D n F k B k ! y k deg X p f × B = deg y k = 0 N S D n F k B k ! y k 1
79 dgrcl y k = 0 N S D n F k B k ! y k Poly D deg y k = 0 N S D n F k B k ! y k 0
80 42 79 syl φ deg y k = 0 N S D n F k B k ! y k 0
81 80 nn0cnd φ deg y k = 0 N S D n F k B k ! y k
82 81 mulid1d φ deg y k = 0 N S D n F k B k ! y k 1 = deg y k = 0 N S D n F k B k ! y k
83 78 82 eqtrd φ deg y k = 0 N S D n F k B k ! y k deg X p f × B = deg y k = 0 N S D n F k B k ! y k
84 70 73 83 3eqtrd φ deg T = deg y k = 0 N S D n F k B k ! y k
85 1 adantr φ k 0 N S
86 15 adantr φ k 0 N F 𝑝𝑚 S
87 elfznn0 k 0 N k 0
88 87 adantl φ k 0 N k 0
89 dvnf S F 𝑝𝑚 S k 0 S D n F k : dom S D n F k
90 85 86 88 89 syl3anc φ k 0 N S D n F k : dom S D n F k
91 simpr φ k 0 N k 0 N
92 dvn2bss S F 𝑝𝑚 S k 0 N dom S D n F N dom S D n F k
93 85 86 91 92 syl3anc φ k 0 N dom S D n F N dom S D n F k
94 5 adantr φ k 0 N B dom S D n F N
95 93 94 sseldd φ k 0 N B dom S D n F k
96 90 95 ffvelrnd φ k 0 N S D n F k B
97 88 faccld φ k 0 N k !
98 97 nncnd φ k 0 N k !
99 97 nnne0d φ k 0 N k ! 0
100 96 98 99 divcld φ k 0 N S D n F k B k !
101 42 4 100 33 dgrle φ deg y k = 0 N S D n F k B k ! y k N
102 84 101 eqbrtrd φ deg T N
103 69 102 jca φ T Poly D deg T N