Metamath Proof Explorer


Theorem tdeglem4

Description: There is only one multi-index with total degree 0. (Contributed by Stefan O'Rear, 29-Mar-2015) Remove a sethood antecedent. (Revised by SN, 7-Aug-2024)

Ref Expression
Hypotheses tdeglem.a A=m0I|m-1Fin
tdeglem.h H=hAfldh
Assertion tdeglem4 XAHX=0X=I×0

Proof

Step Hyp Ref Expression
1 tdeglem.a A=m0I|m-1Fin
2 tdeglem.h H=hAfldh
3 rexnal xI¬Xx=0¬xIXx=0
4 df-ne Xx0¬Xx=0
5 oveq2 h=Xfldh=fldX
6 ovex fldXV
7 5 2 6 fvmpt XAHX=fldX
8 7 adantr XAxIXx0HX=fldX
9 1 psrbagf XAX:I0
10 9 feqmptd XAX=yIXy
11 10 adantr XAxIXx0X=yIXy
12 11 oveq2d XAxIXx0fldX=fldyIXy
13 cnfldbas =Basefld
14 cnfld0 0=0fld
15 cnfldadd +=+fld
16 cnring fldRing
17 ringcmn fldRingfldCMnd
18 16 17 mp1i XAxIXx0fldCMnd
19 id XAXA
20 9 ffnd XAXFnI
21 19 20 fndmexd XAIV
22 21 adantr XAxIXx0IV
23 9 ffvelcdmda XAyIXy0
24 23 nn0cnd XAyIXy
25 24 adantlr XAxIXx0yIXy
26 1 psrbagfsupp XAfinSupp0X
27 10 26 eqbrtrrd XAfinSupp0yIXy
28 27 adantr XAxIXx0finSupp0yIXy
29 disjdifr Ixx=
30 29 a1i XAxIXx0Ixx=
31 difsnid xIIxx=I
32 31 eqcomd xII=Ixx
33 32 ad2antrl XAxIXx0I=Ixx
34 13 14 15 18 22 25 28 30 33 gsumsplit2 XAxIXx0fldyIXy=fldyIxXy+fldyxXy
35 8 12 34 3eqtrd XAxIXx0HX=fldyIxXy+fldyxXy
36 22 difexd XAxIXx0IxV
37 nn0subm 0SubMndfld
38 37 a1i XAxIXx00SubMndfld
39 9 adantr XAxIXx0X:I0
40 eldifi yIxyI
41 ffvelcdm X:I0yIXy0
42 39 40 41 syl2an XAxIXx0yIxXy0
43 42 fmpttd XAxIXx0yIxXy:Ix0
44 36 mptexd XAxIXx0yIxXyV
45 funmpt FunyIxXy
46 45 a1i XAxIXx0FunyIxXy
47 funmpt FunyIXy
48 difss IxI
49 mptss IxIyIxXyyIXy
50 48 49 ax-mp yIxXyyIXy
51 22 mptexd XAxIXx0yIXyV
52 funsssuppss FunyIXyyIxXyyIXyyIXyVyIxXysupp0yIXysupp0
53 47 50 51 52 mp3an12i XAxIXx0yIxXysupp0yIXysupp0
54 fsuppsssupp yIxXyVFunyIxXyfinSupp0yIXyyIxXysupp0yIXysupp0finSupp0yIxXy
55 44 46 28 53 54 syl22anc XAxIXx0finSupp0yIxXy
56 14 18 36 38 43 55 gsumsubmcl XAxIXx0fldyIxXy0
57 ringmnd fldRingfldMnd
58 16 57 ax-mp fldMnd
59 simprl XAxIXx0xI
60 39 59 ffvelcdmd XAxIXx0Xx0
61 60 nn0cnd XAxIXx0Xx
62 fveq2 y=xXy=Xx
63 13 62 gsumsn fldMndxIXxfldyxXy=Xx
64 58 59 61 63 mp3an2i XAxIXx0fldyxXy=Xx
65 elnn0 Xx0XxXx=0
66 60 65 sylib XAxIXx0XxXx=0
67 neneq Xx0¬Xx=0
68 67 ad2antll XAxIXx0¬Xx=0
69 66 68 olcnd XAxIXx0Xx
70 64 69 eqeltrd XAxIXx0fldyxXy
71 nn0nnaddcl fldyIxXy0fldyxXyfldyIxXy+fldyxXy
72 56 70 71 syl2anc XAxIXx0fldyIxXy+fldyxXy
73 72 nnne0d XAxIXx0fldyIxXy+fldyxXy0
74 35 73 eqnetrd XAxIXx0HX0
75 74 expr XAxIXx0HX0
76 4 75 biimtrrid XAxI¬Xx=0HX0
77 76 rexlimdva XAxI¬Xx=0HX0
78 3 77 biimtrrid XA¬xIXx=0HX0
79 78 necon4bd XAHX=0xIXx=0
80 c0ex 0V
81 fnconstg 0VI×0FnI
82 80 81 mp1i XAI×0FnI
83 eqfnfv XFnII×0FnIX=I×0xIXx=I×0x
84 20 82 83 syl2anc XAX=I×0xIXx=I×0x
85 80 fvconst2 xII×0x=0
86 85 eqeq2d xIXx=I×0xXx=0
87 86 ralbiia xIXx=I×0xxIXx=0
88 84 87 bitrdi XAX=I×0xIXx=0
89 79 88 sylibrd XAHX=0X=I×0
90 1 psrbag0 IVI×0A
91 oveq2 h=I×0fldh=fldI×0
92 ovex fldI×0V
93 91 2 92 fvmpt I×0AHI×0=fldI×0
94 21 90 93 3syl XAHI×0=fldI×0
95 fconstmpt I×0=xI0
96 95 oveq2i fldI×0=fldxI0
97 14 gsumz fldMndIVfldxI0=0
98 58 21 97 sylancr XAfldxI0=0
99 96 98 eqtrid XAfldI×0=0
100 94 99 eqtrd XAHI×0=0
101 fveqeq2 X=I×0HX=0HI×0=0
102 100 101 syl5ibrcom XAX=I×0HX=0
103 89 102 impbid XAHX=0X=I×0