Metamath Proof Explorer


Theorem tdeglem4OLD

Description: Obsolete version of tdeglem4 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 29-Mar-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses tdeglem.a A=m0I|m-1Fin
tdeglem.h H=hAfldh
Assertion tdeglem4OLD IVXAHX=0X=I×0

Proof

Step Hyp Ref Expression
1 tdeglem.a A=m0I|m-1Fin
2 tdeglem.h H=hAfldh
3 rexnal xI¬Xx=0¬xIXx=0
4 df-ne Xx0¬Xx=0
5 oveq2 h=Xfldh=fldX
6 ovex fldXV
7 5 2 6 fvmpt XAHX=fldX
8 7 ad2antlr IVXAxIXx0HX=fldX
9 1 psrbagfOLD IVXAX:I0
10 9 feqmptd IVXAX=yIXy
11 10 adantr IVXAxIXx0X=yIXy
12 11 oveq2d IVXAxIXx0fldX=fldyIXy
13 cnfldbas =Basefld
14 cnfld0 0=0fld
15 cnfldadd +=+fld
16 cnring fldRing
17 ringcmn fldRingfldCMnd
18 16 17 mp1i IVXAxIXx0fldCMnd
19 simpll IVXAxIXx0IV
20 9 adantr IVXAxIXx0X:I0
21 20 ffvelcdmda IVXAxIXx0yIXy0
22 21 nn0cnd IVXAxIXx0yIXy
23 1 psrbagfsuppOLD XAIVfinSupp0X
24 23 ancoms IVXAfinSupp0X
25 24 adantr IVXAxIXx0finSupp0X
26 11 25 eqbrtrrd IVXAxIXx0finSupp0yIXy
27 incom Ixx=xIx
28 disjdif xIx=
29 27 28 eqtri Ixx=
30 29 a1i IVXAxIXx0Ixx=
31 difsnid xIIxx=I
32 31 eqcomd xII=Ixx
33 32 ad2antrl IVXAxIXx0I=Ixx
34 13 14 15 18 19 22 26 30 33 gsumsplit2 IVXAxIXx0fldyIXy=fldyIxXy+fldyxXy
35 8 12 34 3eqtrd IVXAxIXx0HX=fldyIxXy+fldyxXy
36 difexg IVIxV
37 36 ad2antrr IVXAxIXx0IxV
38 nn0subm 0SubMndfld
39 38 a1i IVXAxIXx00SubMndfld
40 eldifi yIxyI
41 ffvelcdm X:I0yIXy0
42 20 40 41 syl2an IVXAxIXx0yIxXy0
43 42 fmpttd IVXAxIXx0yIxXy:Ix0
44 36 mptexd IVyIxXyV
45 44 ad2antrr IVXAxIXx0yIxXyV
46 funmpt FunyIxXy
47 46 a1i IVXAxIXx0FunyIxXy
48 funmpt FunyIXy
49 difss IxI
50 resmpt IxIyIXyIx=yIxXy
51 49 50 ax-mp yIXyIx=yIxXy
52 resss yIXyIxyIXy
53 51 52 eqsstrri yIxXyyIXy
54 mptexg IVyIXyV
55 54 ad2antrr IVXAxIXx0yIXyV
56 funsssuppss FunyIXyyIxXyyIXyyIXyVyIxXysupp0yIXysupp0
57 48 53 55 56 mp3an12i IVXAxIXx0yIxXysupp0yIXysupp0
58 fsuppsssupp yIxXyVFunyIxXyfinSupp0yIXyyIxXysupp0yIXysupp0finSupp0yIxXy
59 45 47 26 57 58 syl22anc IVXAxIXx0finSupp0yIxXy
60 14 18 37 39 43 59 gsumsubmcl IVXAxIXx0fldyIxXy0
61 ringmnd fldRingfldMnd
62 16 61 mp1i IVXAxIXx0fldMnd
63 simprl IVXAxIXx0xI
64 20 63 ffvelcdmd IVXAxIXx0Xx0
65 64 nn0cnd IVXAxIXx0Xx
66 fveq2 y=xXy=Xx
67 13 66 gsumsn fldMndxIXxfldyxXy=Xx
68 62 63 65 67 syl3anc IVXAxIXx0fldyxXy=Xx
69 simprr IVXAxIXx0Xx0
70 69 4 sylib IVXAxIXx0¬Xx=0
71 elnn0 Xx0XxXx=0
72 64 71 sylib IVXAxIXx0XxXx=0
73 orel2 ¬Xx=0XxXx=0Xx
74 70 72 73 sylc IVXAxIXx0Xx
75 68 74 eqeltrd IVXAxIXx0fldyxXy
76 nn0nnaddcl fldyIxXy0fldyxXyfldyIxXy+fldyxXy
77 60 75 76 syl2anc IVXAxIXx0fldyIxXy+fldyxXy
78 77 nnne0d IVXAxIXx0fldyIxXy+fldyxXy0
79 35 78 eqnetrd IVXAxIXx0HX0
80 79 expr IVXAxIXx0HX0
81 4 80 biimtrrid IVXAxI¬Xx=0HX0
82 81 rexlimdva IVXAxI¬Xx=0HX0
83 3 82 biimtrrid IVXA¬xIXx=0HX0
84 83 necon4bd IVXAHX=0xIXx=0
85 9 ffnd IVXAXFnI
86 0nn0 00
87 fnconstg 00I×0FnI
88 86 87 mp1i IVXAI×0FnI
89 eqfnfv XFnII×0FnIX=I×0xIXx=I×0x
90 85 88 89 syl2anc IVXAX=I×0xIXx=I×0x
91 c0ex 0V
92 91 fvconst2 xII×0x=0
93 92 eqeq2d xIXx=I×0xXx=0
94 93 ralbiia xIXx=I×0xxIXx=0
95 90 94 bitrdi IVXAX=I×0xIXx=0
96 84 95 sylibrd IVXAHX=0X=I×0
97 1 psrbag0 IVI×0A
98 97 adantr IVXAI×0A
99 oveq2 h=I×0fldh=fldI×0
100 ovex fldI×0V
101 99 2 100 fvmpt I×0AHI×0=fldI×0
102 98 101 syl IVXAHI×0=fldI×0
103 fconstmpt I×0=xI0
104 103 oveq2i fldI×0=fldxI0
105 16 61 ax-mp fldMnd
106 14 gsumz fldMndIVfldxI0=0
107 105 106 mpan IVfldxI0=0
108 107 adantr IVXAfldxI0=0
109 104 108 eqtrid IVXAfldI×0=0
110 102 109 eqtrd IVXAHI×0=0
111 fveqeq2 X=I×0HX=0HI×0=0
112 110 111 syl5ibrcom IVXAX=I×0HX=0
113 96 112 impbid IVXAHX=0X=I×0