Metamath Proof Explorer


Theorem tmdgsum2

Description: For any neighborhood U of n X , there is a neighborhood u of X such that any sum of n elements in u sums to an element of U . (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses tmdgsum.j J=TopOpenG
tmdgsum.b B=BaseG
tmdgsum2.t ·˙=G
tmdgsum2.1 φGCMnd
tmdgsum2.2 φGTopMnd
tmdgsum2.a φAFin
tmdgsum2.u φUJ
tmdgsum2.x φXB
tmdgsum2.3 φA·˙XU
Assertion tmdgsum2 φuJXufuAGfU

Proof

Step Hyp Ref Expression
1 tmdgsum.j J=TopOpenG
2 tmdgsum.b B=BaseG
3 tmdgsum2.t ·˙=G
4 tmdgsum2.1 φGCMnd
5 tmdgsum2.2 φGTopMnd
6 tmdgsum2.a φAFin
7 tmdgsum2.u φUJ
8 tmdgsum2.x φXB
9 tmdgsum2.3 φA·˙XU
10 eqid fBAGf=fBAGf
11 10 mptpreima fBAGf-1U=fBA|GfU
12 1 2 tmdgsum GCMndGTopMndAFinfBAGfJ^ko𝒫ACnJ
13 4 5 6 12 syl3anc φfBAGfJ^ko𝒫ACnJ
14 cnima fBAGfJ^ko𝒫ACnJUJfBAGf-1UJ^ko𝒫A
15 13 7 14 syl2anc φfBAGf-1UJ^ko𝒫A
16 11 15 eqeltrrid φfBA|GfUJ^ko𝒫A
17 1 2 tmdtopon GTopMndJTopOnB
18 topontop JTopOnBJTop
19 5 17 18 3syl φJTop
20 xkopt JTopAFinJ^ko𝒫A=𝑡A×J
21 19 6 20 syl2anc φJ^ko𝒫A=𝑡A×J
22 fnconstg JTopOnBA×JFnA
23 5 17 22 3syl φA×JFnA
24 eqid x|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgy=x|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgy
25 24 ptval AFinA×JFnA𝑡A×J=topGenx|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgy
26 6 23 25 syl2anc φ𝑡A×J=topGenx|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgy
27 21 26 eqtrd φJ^ko𝒫A=topGenx|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgy
28 16 27 eleqtrd φfBA|GfUtopGenx|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgy
29 oveq2 f=A×XGf=GA×X
30 29 eleq1d f=A×XGfUGA×XU
31 fconst6g XBA×X:AB
32 8 31 syl φA×X:AB
33 2 fvexi BV
34 elmapg BVAFinA×XBAA×X:AB
35 33 6 34 sylancr φA×XBAA×X:AB
36 32 35 mpbird φA×XBA
37 fconstmpt A×X=kAX
38 37 oveq2i GA×X=GkAX
39 cmnmnd GCMndGMnd
40 4 39 syl φGMnd
41 2 3 gsumconst GMndAFinXBGkAX=A·˙X
42 40 6 8 41 syl3anc φGkAX=A·˙X
43 38 42 eqtrid φGA×X=A·˙X
44 43 9 eqeltrd φGA×XU
45 30 36 44 elrabd φA×XfBA|GfU
46 tg2 fBA|GfUtopGenx|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XfBA|GfUtx|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XttfBA|GfU
47 28 45 46 syl2anc φtx|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XttfBA|GfU
48 eleq2 t=xA×XtA×Xx
49 sseq1 t=xtfBA|GfUxfBA|GfU
50 48 49 anbi12d t=xA×XttfBA|GfUA×XxxfBA|GfU
51 50 rexab2 tx|ggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XttfBA|GfUxggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XxxfBA|GfU
52 47 51 sylib φxggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XxxfBA|GfU
53 toponuni JTopOnBB=J
54 5 17 53 3syl φB=J
55 54 ad2antrr φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUB=J
56 55 ineq1d φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUBrang=Jrang
57 19 ad2antrr φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUJTop
58 simplrl φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUgFnA
59 simplrr φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUyAgyA×Jy
60 fvconst2g JTopyAA×Jy=J
61 60 eleq2d JTopyAgyA×JygyJ
62 61 ralbidva JTopyAgyA×JyyAgyJ
63 57 62 syl φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUyAgyA×JyyAgyJ
64 59 63 mpbid φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUyAgyJ
65 ffnfv g:AJgFnAyAgyJ
66 58 64 65 sylanbrc φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUg:AJ
67 66 frnd φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUrangJ
68 6 ad2antrr φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUAFin
69 dffn4 gFnAg:Aontorang
70 58 69 sylib φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUg:Aontorang
71 fofi AFing:AontorangrangFin
72 68 70 71 syl2anc φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUrangFin
73 eqid J=J
74 73 rintopn JToprangJrangFinJrangJ
75 57 67 72 74 syl3anc φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUJrangJ
76 56 75 eqeltrd φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUBrangJ
77 8 ad2antrr φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUXB
78 fconstmpt A×X=yAX
79 simprl φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUA×XyAgy
80 78 79 eqeltrrid φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUyAXyAgy
81 mptelixpg AFinyAXyAgyyAXgy
82 68 81 syl φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUyAXyAgyyAXgy
83 80 82 mpbid φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUyAXgy
84 eleq2 z=gyXzXgy
85 84 ralrn gFnAzrangXzyAXgy
86 58 85 syl φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUzrangXzyAXgy
87 83 86 mpbird φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUzrangXz
88 elrint XBrangXBzrangXz
89 77 87 88 sylanbrc φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUXBrang
90 33 inex1 BrangV
91 ixpconstg AFinBrangVyABrang=BrangA
92 68 90 91 sylancl φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUyABrang=BrangA
93 inss2 Brangrang
94 fnfvelrn gFnAyAgyrang
95 intss1 gyrangranggy
96 94 95 syl gFnAyAranggy
97 93 96 sstrid gFnAyABranggy
98 97 ralrimiva gFnAyABranggy
99 ss2ixp yABranggyyABrangyAgy
100 58 98 99 3syl φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUyABrangyAgy
101 92 100 eqsstrrd φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUBrangAyAgy
102 ssrab yAgyfBA|GfUyAgyBAfyAgyGfU
103 102 simprbi yAgyfBA|GfUfyAgyGfU
104 103 ad2antll φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUfyAgyGfU
105 ssralv BrangAyAgyfyAgyGfUfBrangAGfU
106 101 104 105 sylc φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUfBrangAGfU
107 eleq2 u=BrangXuXBrang
108 oveq1 u=BranguA=BrangA
109 108 raleqdv u=BrangfuAGfUfBrangAGfU
110 107 109 anbi12d u=BrangXufuAGfUXBrangfBrangAGfU
111 110 rspcev BrangJXBrangfBrangAGfUuJXufuAGfU
112 76 89 106 111 syl12anc φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUuJXufuAGfU
113 112 ex φgFnAyAgyA×JyA×XyAgyyAgyfBA|GfUuJXufuAGfU
114 113 3adantr3 φgFnAyAgyA×JyzFinyAzgy=A×JyA×XyAgyyAgyfBA|GfUuJXufuAGfU
115 eleq2 x=yAgyA×XxA×XyAgy
116 sseq1 x=yAgyxfBA|GfUyAgyfBA|GfU
117 115 116 anbi12d x=yAgyA×XxxfBA|GfUA×XyAgyyAgyfBA|GfU
118 117 imbi1d x=yAgyA×XxxfBA|GfUuJXufuAGfUA×XyAgyyAgyfBA|GfUuJXufuAGfU
119 114 118 syl5ibrcom φgFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XxxfBA|GfUuJXufuAGfU
120 119 expimpd φgFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XxxfBA|GfUuJXufuAGfU
121 120 exlimdv φggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XxxfBA|GfUuJXufuAGfU
122 121 impd φggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XxxfBA|GfUuJXufuAGfU
123 122 exlimdv φxggFnAyAgyA×JyzFinyAzgy=A×Jyx=yAgyA×XxxfBA|GfUuJXufuAGfU
124 52 123 mpd φuJXufuAGfU