Metamath Proof Explorer


Theorem tngngp3

Description: Alternate definition of a normed group (i.e., a group equipped with a norm) without using the properties of a metric space. This corresponds to the definition in N. H. Bingham, A. J. Ostaszewski: "Normed versus topological groups: dichotomy and duality", 2010, Dissertationes Mathematicae 472, pp. 1-138 and E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006. (Contributed by AV, 16-Oct-2021)

Ref Expression
Hypotheses tngngp3.t T=GtoNrmGrpN
tngngp3.x X=BaseG
tngngp3.z 0˙=0G
tngngp3.p +˙=+G
tngngp3.i I=invgG
Assertion tngngp3 N:XTNrmGrpGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+Ny

Proof

Step Hyp Ref Expression
1 tngngp3.t T=GtoNrmGrpN
2 tngngp3.x X=BaseG
3 tngngp3.z 0˙=0G
4 tngngp3.p +˙=+G
5 tngngp3.i I=invgG
6 2 fvexi XV
7 fex N:XXVNV
8 6 7 mpan2 N:XNV
9 1 tnggrpr NVTNrmGrpGGrp
10 simp2 NVTNrmGrpGGrpN:XGGrp
11 eqid BaseT=BaseT
12 eqid normT=normT
13 eqid 0T=0T
14 11 12 13 nmeq0 TNrmGrpxBaseTnormTx=0x=0T
15 eqid invgT=invgT
16 11 12 15 nminv TNrmGrpxBaseTnormTinvgTx=normTx
17 eqid +T=+T
18 11 12 17 nmtri TNrmGrpxBaseTyBaseTnormTx+TynormTx+normTy
19 18 3expa TNrmGrpxBaseTyBaseTnormTx+TynormTx+normTy
20 19 ralrimiva TNrmGrpxBaseTyBaseTnormTx+TynormTx+normTy
21 14 16 20 3jca TNrmGrpxBaseTnormTx=0x=0TnormTinvgTx=normTxyBaseTnormTx+TynormTx+normTy
22 21 ralrimiva TNrmGrpxBaseTnormTx=0x=0TnormTinvgTx=normTxyBaseTnormTx+TynormTx+normTy
23 22 adantl NVTNrmGrpxBaseTnormTx=0x=0TnormTinvgTx=normTxyBaseTnormTx+TynormTx+normTy
24 23 3ad2ant1 NVTNrmGrpGGrpN:XxBaseTnormTx=0x=0TnormTinvgTx=normTxyBaseTnormTx+TynormTx+normTy
25 1 2 tngbas NVX=BaseT
26 1 4 tngplusg NV+˙=+T
27 eqidd NVBaseG=BaseG
28 eqid BaseG=BaseG
29 1 28 tngbas NVBaseG=BaseT
30 eqid +G=+G
31 1 30 tngplusg NV+G=+T
32 31 oveqd NVx+Gy=x+Ty
33 32 adantr NVxBaseGyBaseGx+Gy=x+Ty
34 27 29 33 grpinvpropd NVinvgG=invgT
35 5 34 eqtrid NVI=invgT
36 25 26 35 3jca NVX=BaseT+˙=+TI=invgT
37 36 adantr NVTNrmGrpX=BaseT+˙=+TI=invgT
38 37 3ad2ant1 NVTNrmGrpGGrpN:XX=BaseT+˙=+TI=invgT
39 reex V
40 1 2 39 tngnm GGrpN:XN=normT
41 40 3adant1 NVTNrmGrpGGrpN:XN=normT
42 1 3 tng0 NV0˙=0T
43 42 adantr NVTNrmGrp0˙=0T
44 43 3ad2ant1 NVTNrmGrpGGrpN:X0˙=0T
45 38 41 44 3jca NVTNrmGrpGGrpN:XX=BaseT+˙=+TI=invgTN=normT0˙=0T
46 simp1 X=BaseT+˙=+TI=invgTX=BaseT
47 46 3ad2ant1 X=BaseT+˙=+TI=invgTN=normT0˙=0TX=BaseT
48 simp2 X=BaseT+˙=+TI=invgTN=normT0˙=0TN=normT
49 48 fveq1d X=BaseT+˙=+TI=invgTN=normT0˙=0TNx=normTx
50 49 eqeq1d X=BaseT+˙=+TI=invgTN=normT0˙=0TNx=0normTx=0
51 simp3 X=BaseT+˙=+TI=invgTN=normT0˙=0T0˙=0T
52 51 eqeq2d X=BaseT+˙=+TI=invgTN=normT0˙=0Tx=0˙x=0T
53 50 52 bibi12d X=BaseT+˙=+TI=invgTN=normT0˙=0TNx=0x=0˙normTx=0x=0T
54 simp3 X=BaseT+˙=+TI=invgTI=invgT
55 54 3ad2ant1 X=BaseT+˙=+TI=invgTN=normT0˙=0TI=invgT
56 55 fveq1d X=BaseT+˙=+TI=invgTN=normT0˙=0TIx=invgTx
57 48 56 fveq12d X=BaseT+˙=+TI=invgTN=normT0˙=0TNIx=normTinvgTx
58 57 49 eqeq12d X=BaseT+˙=+TI=invgTN=normT0˙=0TNIx=NxnormTinvgTx=normTx
59 simp2 X=BaseT+˙=+TI=invgT+˙=+T
60 59 3ad2ant1 X=BaseT+˙=+TI=invgTN=normT0˙=0T+˙=+T
61 60 oveqd X=BaseT+˙=+TI=invgTN=normT0˙=0Tx+˙y=x+Ty
62 48 61 fveq12d X=BaseT+˙=+TI=invgTN=normT0˙=0TNx+˙y=normTx+Ty
63 fveq1 N=normTNx=normTx
64 fveq1 N=normTNy=normTy
65 63 64 oveq12d N=normTNx+Ny=normTx+normTy
66 65 3ad2ant2 X=BaseT+˙=+TI=invgTN=normT0˙=0TNx+Ny=normTx+normTy
67 62 66 breq12d X=BaseT+˙=+TI=invgTN=normT0˙=0TNx+˙yNx+NynormTx+TynormTx+normTy
68 47 67 raleqbidv X=BaseT+˙=+TI=invgTN=normT0˙=0TyXNx+˙yNx+NyyBaseTnormTx+TynormTx+normTy
69 53 58 68 3anbi123d X=BaseT+˙=+TI=invgTN=normT0˙=0TNx=0x=0˙NIx=NxyXNx+˙yNx+NynormTx=0x=0TnormTinvgTx=normTxyBaseTnormTx+TynormTx+normTy
70 47 69 raleqbidv X=BaseT+˙=+TI=invgTN=normT0˙=0TxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyxBaseTnormTx=0x=0TnormTinvgTx=normTxyBaseTnormTx+TynormTx+normTy
71 45 70 syl NVTNrmGrpGGrpN:XxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyxBaseTnormTx=0x=0TnormTinvgTx=normTxyBaseTnormTx+TynormTx+normTy
72 24 71 mpbird NVTNrmGrpGGrpN:XxXNx=0x=0˙NIx=NxyXNx+˙yNx+Ny
73 10 72 jca NVTNrmGrpGGrpN:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+Ny
74 73 3exp NVTNrmGrpGGrpN:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+Ny
75 9 74 mpd NVTNrmGrpN:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+Ny
76 75 expcom TNrmGrpNVN:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+Ny
77 76 com13 N:XNVTNrmGrpGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+Ny
78 8 77 mpd N:XTNrmGrpGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+Ny
79 eqid -G=-G
80 simpl GGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyGGrp
81 80 adantl N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyGGrp
82 simpl N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyN:X
83 fveq2 x=aNx=Na
84 83 eqeq1d x=aNx=0Na=0
85 eqeq1 x=ax=0˙a=0˙
86 84 85 bibi12d x=aNx=0x=0˙Na=0a=0˙
87 fveq2 x=aIx=Ia
88 87 fveq2d x=aNIx=NIa
89 88 83 eqeq12d x=aNIx=NxNIa=Na
90 fvoveq1 x=aNx+˙y=Na+˙y
91 83 oveq1d x=aNx+Ny=Na+Ny
92 90 91 breq12d x=aNx+˙yNx+NyNa+˙yNa+Ny
93 92 ralbidv x=ayXNx+˙yNx+NyyXNa+˙yNa+Ny
94 86 89 93 3anbi123d x=aNx=0x=0˙NIx=NxyXNx+˙yNx+NyNa=0a=0˙NIa=NayXNa+˙yNa+Ny
95 94 rspccva xXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXNa=0a=0˙NIa=NayXNa+˙yNa+Ny
96 simp1 Na=0a=0˙NIa=NayXNa+˙yNa+NyNa=0a=0˙
97 95 96 syl xXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXNa=0a=0˙
98 97 ex xXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXNa=0a=0˙
99 98 adantl GGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXNa=0a=0˙
100 99 adantl N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXNa=0a=0˙
101 100 imp N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXNa=0a=0˙
102 2 4 5 79 grpsubval aXbXa-Gb=a+˙Ib
103 102 adantl N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXbXa-Gb=a+˙Ib
104 103 fveq2d N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXbXNa-Gb=Na+˙Ib
105 3simpc Nx=0x=0˙NIx=NxyXNx+˙yNx+NyNIx=NxyXNx+˙yNx+Ny
106 105 ralimi xXNx=0x=0˙NIx=NxyXNx+˙yNx+NyxXNIx=NxyXNx+˙yNx+Ny
107 simpr NIx=NxyXNx+˙yNx+NyyXNx+˙yNx+Ny
108 107 ralimi xXNIx=NxyXNx+˙yNx+NyxXyXNx+˙yNx+Ny
109 oveq2 y=Iba+˙y=a+˙Ib
110 109 fveq2d y=IbNa+˙y=Na+˙Ib
111 fveq2 y=IbNy=NIb
112 111 oveq2d y=IbNa+Ny=Na+NIb
113 110 112 breq12d y=IbNa+˙yNa+NyNa+˙IbNa+NIb
114 92 113 rspc2v aXIbXxXyXNx+˙yNx+NyNa+˙IbNa+NIb
115 2 5 grpinvcl GGrpbXIbX
116 115 ex GGrpbXIbX
117 116 anim2d GGrpaXbXaXIbX
118 117 imp GGrpaXbXaXIbX
119 114 118 syl11 xXyXNx+˙yNx+NyGGrpaXbXNa+˙IbNa+NIb
120 119 expd xXyXNx+˙yNx+NyGGrpaXbXNa+˙IbNa+NIb
121 108 120 syl xXNIx=NxyXNx+˙yNx+NyGGrpaXbXNa+˙IbNa+NIb
122 121 imp xXNIx=NxyXNx+˙yNx+NyGGrpaXbXNa+˙IbNa+NIb
123 122 imp xXNIx=NxyXNx+˙yNx+NyGGrpaXbXNa+˙IbNa+NIb
124 simpl NIx=NxyXNx+˙yNx+NyNIx=Nx
125 124 ralimi xXNIx=NxyXNx+˙yNx+NyxXNIx=Nx
126 fveq2 x=bIx=Ib
127 126 fveq2d x=bNIx=NIb
128 fveq2 x=bNx=Nb
129 127 128 eqeq12d x=bNIx=NxNIb=Nb
130 129 rspccva xXNIx=NxbXNIb=Nb
131 130 eqcomd xXNIx=NxbXNb=NIb
132 131 ex xXNIx=NxbXNb=NIb
133 125 132 syl xXNIx=NxyXNx+˙yNx+NybXNb=NIb
134 133 adantr xXNIx=NxyXNx+˙yNx+NyGGrpbXNb=NIb
135 134 adantld xXNIx=NxyXNx+˙yNx+NyGGrpaXbXNb=NIb
136 135 imp xXNIx=NxyXNx+˙yNx+NyGGrpaXbXNb=NIb
137 136 oveq2d xXNIx=NxyXNx+˙yNx+NyGGrpaXbXNa+Nb=Na+NIb
138 123 137 breqtrrd xXNIx=NxyXNx+˙yNx+NyGGrpaXbXNa+˙IbNa+Nb
139 138 ex xXNIx=NxyXNx+˙yNx+NyGGrpaXbXNa+˙IbNa+Nb
140 139 ex xXNIx=NxyXNx+˙yNx+NyGGrpaXbXNa+˙IbNa+Nb
141 106 140 syl xXNx=0x=0˙NIx=NxyXNx+˙yNx+NyGGrpaXbXNa+˙IbNa+Nb
142 141 impcom GGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXbXNa+˙IbNa+Nb
143 142 adantl N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXbXNa+˙IbNa+Nb
144 143 imp N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXbXNa+˙IbNa+Nb
145 104 144 eqbrtrd N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyaXbXNa-GbNa+Nb
146 1 2 79 3 81 82 101 145 tngngpd N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyTNrmGrp
147 146 ex N:XGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+NyTNrmGrp
148 78 147 impbid N:XTNrmGrpGGrpxXNx=0x=0˙NIx=NxyXNx+˙yNx+Ny