Metamath Proof Explorer


Theorem tngngp3

Description: Alternate definition of a normed group (i.e., a group equipped with a norm) without using the properties of a metric space. This corresponds to the definition in N. H. Bingham, A. J. Ostaszewski: "Normed versus topological groups: dichotomy and duality", 2010, Dissertationes Mathematicae 472, pp. 1-138 and E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006. (Contributed by AV, 16-Oct-2021)

Ref Expression
Hypotheses tngngp3.t T = G toNrmGrp N
tngngp3.x X = Base G
tngngp3.z 0 ˙ = 0 G
tngngp3.p + ˙ = + G
tngngp3.i I = inv g G
Assertion tngngp3 N : X T NrmGrp G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y

Proof

Step Hyp Ref Expression
1 tngngp3.t T = G toNrmGrp N
2 tngngp3.x X = Base G
3 tngngp3.z 0 ˙ = 0 G
4 tngngp3.p + ˙ = + G
5 tngngp3.i I = inv g G
6 2 fvexi X V
7 fex N : X X V N V
8 6 7 mpan2 N : X N V
9 1 tnggrpr N V T NrmGrp G Grp
10 simp2 N V T NrmGrp G Grp N : X G Grp
11 eqid Base T = Base T
12 eqid norm T = norm T
13 eqid 0 T = 0 T
14 11 12 13 nmeq0 T NrmGrp x Base T norm T x = 0 x = 0 T
15 eqid inv g T = inv g T
16 11 12 15 nminv T NrmGrp x Base T norm T inv g T x = norm T x
17 eqid + T = + T
18 11 12 17 nmtri T NrmGrp x Base T y Base T norm T x + T y norm T x + norm T y
19 18 3expa T NrmGrp x Base T y Base T norm T x + T y norm T x + norm T y
20 19 ralrimiva T NrmGrp x Base T y Base T norm T x + T y norm T x + norm T y
21 14 16 20 3jca T NrmGrp x Base T norm T x = 0 x = 0 T norm T inv g T x = norm T x y Base T norm T x + T y norm T x + norm T y
22 21 ralrimiva T NrmGrp x Base T norm T x = 0 x = 0 T norm T inv g T x = norm T x y Base T norm T x + T y norm T x + norm T y
23 22 adantl N V T NrmGrp x Base T norm T x = 0 x = 0 T norm T inv g T x = norm T x y Base T norm T x + T y norm T x + norm T y
24 23 3ad2ant1 N V T NrmGrp G Grp N : X x Base T norm T x = 0 x = 0 T norm T inv g T x = norm T x y Base T norm T x + T y norm T x + norm T y
25 1 2 tngbas N V X = Base T
26 1 4 tngplusg N V + ˙ = + T
27 eqidd N V Base G = Base G
28 eqid Base G = Base G
29 1 28 tngbas N V Base G = Base T
30 eqid + G = + G
31 1 30 tngplusg N V + G = + T
32 31 oveqd N V x + G y = x + T y
33 32 adantr N V x Base G y Base G x + G y = x + T y
34 27 29 33 grpinvpropd N V inv g G = inv g T
35 5 34 syl5eq N V I = inv g T
36 25 26 35 3jca N V X = Base T + ˙ = + T I = inv g T
37 36 adantr N V T NrmGrp X = Base T + ˙ = + T I = inv g T
38 37 3ad2ant1 N V T NrmGrp G Grp N : X X = Base T + ˙ = + T I = inv g T
39 reex V
40 1 2 39 tngnm G Grp N : X N = norm T
41 40 3adant1 N V T NrmGrp G Grp N : X N = norm T
42 1 3 tng0 N V 0 ˙ = 0 T
43 42 adantr N V T NrmGrp 0 ˙ = 0 T
44 43 3ad2ant1 N V T NrmGrp G Grp N : X 0 ˙ = 0 T
45 38 41 44 3jca N V T NrmGrp G Grp N : X X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T
46 simp1 X = Base T + ˙ = + T I = inv g T X = Base T
47 46 3ad2ant1 X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T X = Base T
48 simp2 X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N = norm T
49 48 fveq1d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N x = norm T x
50 49 eqeq1d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N x = 0 norm T x = 0
51 simp3 X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T 0 ˙ = 0 T
52 51 eqeq2d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T x = 0 ˙ x = 0 T
53 50 52 bibi12d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N x = 0 x = 0 ˙ norm T x = 0 x = 0 T
54 simp3 X = Base T + ˙ = + T I = inv g T I = inv g T
55 54 3ad2ant1 X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T I = inv g T
56 55 fveq1d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T I x = inv g T x
57 48 56 fveq12d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N I x = norm T inv g T x
58 57 49 eqeq12d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N I x = N x norm T inv g T x = norm T x
59 simp2 X = Base T + ˙ = + T I = inv g T + ˙ = + T
60 59 3ad2ant1 X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T + ˙ = + T
61 60 oveqd X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T x + ˙ y = x + T y
62 48 61 fveq12d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N x + ˙ y = norm T x + T y
63 fveq1 N = norm T N x = norm T x
64 fveq1 N = norm T N y = norm T y
65 63 64 oveq12d N = norm T N x + N y = norm T x + norm T y
66 65 3ad2ant2 X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N x + N y = norm T x + norm T y
67 62 66 breq12d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N x + ˙ y N x + N y norm T x + T y norm T x + norm T y
68 47 67 raleqbidv X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T y X N x + ˙ y N x + N y y Base T norm T x + T y norm T x + norm T y
69 53 58 68 3anbi123d X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y norm T x = 0 x = 0 T norm T inv g T x = norm T x y Base T norm T x + T y norm T x + norm T y
70 47 69 raleqbidv X = Base T + ˙ = + T I = inv g T N = norm T 0 ˙ = 0 T x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y x Base T norm T x = 0 x = 0 T norm T inv g T x = norm T x y Base T norm T x + T y norm T x + norm T y
71 45 70 syl N V T NrmGrp G Grp N : X x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y x Base T norm T x = 0 x = 0 T norm T inv g T x = norm T x y Base T norm T x + T y norm T x + norm T y
72 24 71 mpbird N V T NrmGrp G Grp N : X x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y
73 10 72 jca N V T NrmGrp G Grp N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y
74 73 3exp N V T NrmGrp G Grp N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y
75 9 74 mpd N V T NrmGrp N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y
76 75 expcom T NrmGrp N V N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y
77 76 com13 N : X N V T NrmGrp G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y
78 8 77 mpd N : X T NrmGrp G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y
79 eqid - G = - G
80 simpl G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y G Grp
81 80 adantl N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y G Grp
82 simpl N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y N : X
83 fveq2 x = a N x = N a
84 83 eqeq1d x = a N x = 0 N a = 0
85 eqeq1 x = a x = 0 ˙ a = 0 ˙
86 84 85 bibi12d x = a N x = 0 x = 0 ˙ N a = 0 a = 0 ˙
87 fveq2 x = a I x = I a
88 87 fveq2d x = a N I x = N I a
89 88 83 eqeq12d x = a N I x = N x N I a = N a
90 fvoveq1 x = a N x + ˙ y = N a + ˙ y
91 83 oveq1d x = a N x + N y = N a + N y
92 90 91 breq12d x = a N x + ˙ y N x + N y N a + ˙ y N a + N y
93 92 ralbidv x = a y X N x + ˙ y N x + N y y X N a + ˙ y N a + N y
94 86 89 93 3anbi123d x = a N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y N a = 0 a = 0 ˙ N I a = N a y X N a + ˙ y N a + N y
95 94 rspccva x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X N a = 0 a = 0 ˙ N I a = N a y X N a + ˙ y N a + N y
96 simp1 N a = 0 a = 0 ˙ N I a = N a y X N a + ˙ y N a + N y N a = 0 a = 0 ˙
97 95 96 syl x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X N a = 0 a = 0 ˙
98 97 ex x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X N a = 0 a = 0 ˙
99 98 adantl G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X N a = 0 a = 0 ˙
100 99 adantl N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X N a = 0 a = 0 ˙
101 100 imp N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X N a = 0 a = 0 ˙
102 2 4 5 79 grpsubval a X b X a - G b = a + ˙ I b
103 102 adantl N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X b X a - G b = a + ˙ I b
104 103 fveq2d N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X b X N a - G b = N a + ˙ I b
105 3simpc N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y N I x = N x y X N x + ˙ y N x + N y
106 105 ralimi x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y x X N I x = N x y X N x + ˙ y N x + N y
107 simpr N I x = N x y X N x + ˙ y N x + N y y X N x + ˙ y N x + N y
108 107 ralimi x X N I x = N x y X N x + ˙ y N x + N y x X y X N x + ˙ y N x + N y
109 oveq2 y = I b a + ˙ y = a + ˙ I b
110 109 fveq2d y = I b N a + ˙ y = N a + ˙ I b
111 fveq2 y = I b N y = N I b
112 111 oveq2d y = I b N a + N y = N a + N I b
113 110 112 breq12d y = I b N a + ˙ y N a + N y N a + ˙ I b N a + N I b
114 92 113 rspc2v a X I b X x X y X N x + ˙ y N x + N y N a + ˙ I b N a + N I b
115 2 5 grpinvcl G Grp b X I b X
116 115 ex G Grp b X I b X
117 116 anim2d G Grp a X b X a X I b X
118 117 imp G Grp a X b X a X I b X
119 114 118 syl11 x X y X N x + ˙ y N x + N y G Grp a X b X N a + ˙ I b N a + N I b
120 119 expd x X y X N x + ˙ y N x + N y G Grp a X b X N a + ˙ I b N a + N I b
121 108 120 syl x X N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N a + ˙ I b N a + N I b
122 121 imp x X N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N a + ˙ I b N a + N I b
123 122 imp x X N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N a + ˙ I b N a + N I b
124 simpl N I x = N x y X N x + ˙ y N x + N y N I x = N x
125 124 ralimi x X N I x = N x y X N x + ˙ y N x + N y x X N I x = N x
126 fveq2 x = b I x = I b
127 126 fveq2d x = b N I x = N I b
128 fveq2 x = b N x = N b
129 127 128 eqeq12d x = b N I x = N x N I b = N b
130 129 rspccva x X N I x = N x b X N I b = N b
131 130 eqcomd x X N I x = N x b X N b = N I b
132 131 ex x X N I x = N x b X N b = N I b
133 125 132 syl x X N I x = N x y X N x + ˙ y N x + N y b X N b = N I b
134 133 adantr x X N I x = N x y X N x + ˙ y N x + N y G Grp b X N b = N I b
135 134 adantld x X N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N b = N I b
136 135 imp x X N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N b = N I b
137 136 oveq2d x X N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N a + N b = N a + N I b
138 123 137 breqtrrd x X N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N a + ˙ I b N a + N b
139 138 ex x X N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N a + ˙ I b N a + N b
140 139 ex x X N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N a + ˙ I b N a + N b
141 106 140 syl x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y G Grp a X b X N a + ˙ I b N a + N b
142 141 impcom G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X b X N a + ˙ I b N a + N b
143 142 adantl N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X b X N a + ˙ I b N a + N b
144 143 imp N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X b X N a + ˙ I b N a + N b
145 104 144 eqbrtrd N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y a X b X N a - G b N a + N b
146 1 2 79 3 81 82 101 145 tngngpd N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y T NrmGrp
147 146 ex N : X G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y T NrmGrp
148 78 147 impbid N : X T NrmGrp G Grp x X N x = 0 x = 0 ˙ N I x = N x y X N x + ˙ y N x + N y