Metamath Proof Explorer


Theorem vitalilem3

Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)

Ref Expression
Hypotheses vitali.1 ˙=xy|x01y01xy
vitali.2 S=01/˙
vitali.3 φFFnS
vitali.4 φzSzFzz
vitali.5 φG:1-1 onto11
vitali.6 T=ns|sGnranF
vitali.7 φ¬ranF𝒫domvol
Assertion vitalilem3 φDisjmTm

Proof

Step Hyp Ref Expression
1 vitali.1 ˙=xy|x01y01xy
2 vitali.2 S=01/˙
3 vitali.3 φFFnS
4 vitali.4 φzSzFzz
5 vitali.5 φG:1-1 onto11
6 vitali.6 T=ns|sGnranF
7 vitali.7 φ¬ranF𝒫domvol
8 simprlr φmwTmkwTkwTm
9 simprll φmwTmkwTkm
10 fveq2 n=mGn=Gm
11 10 oveq2d n=msGn=sGm
12 11 eleq1d n=msGnranFsGmranF
13 12 rabbidv n=ms|sGnranF=s|sGmranF
14 reex V
15 14 rabex s|sGmranFV
16 13 6 15 fvmpt mTm=s|sGmranF
17 9 16 syl φmwTmkwTkTm=s|sGmranF
18 8 17 eleqtrd φmwTmkwTkws|sGmranF
19 oveq1 s=wsGm=wGm
20 19 eleq1d s=wsGmranFwGmranF
21 20 elrab ws|sGmranFwwGmranF
22 18 21 sylib φmwTmkwTkwwGmranF
23 22 simpld φmwTmkwTkw
24 23 recnd φmwTmkwTkw
25 f1of G:1-1 onto11G:11
26 5 25 syl φG:11
27 inss1 11
28 fss G:1111G:
29 26 27 28 sylancl φG:
30 29 adantr φmwTmkwTkG:
31 30 9 ffvelcdmd φmwTmkwTkGm
32 qcn GmGm
33 31 32 syl φmwTmkwTkGm
34 simprrl φmwTmkwTkk
35 30 34 ffvelcdmd φmwTmkwTkGk
36 qcn GkGk
37 35 36 syl φmwTmkwTkGk
38 1 vitalilem1 ˙Er01
39 38 a1i φmwTmkwTk˙Er01
40 1 2 3 4 5 6 7 vitalilem2 φranF0101mTmmTm12
41 40 simp1d φranF01
42 41 adantr φmwTmkwTkranF01
43 22 simprd φmwTmkwTkwGmranF
44 42 43 sseldd φmwTmkwTkwGm01
45 simprrr φmwTmkwTkwTk
46 fveq2 n=kGn=Gk
47 46 oveq2d n=ksGn=sGk
48 47 eleq1d n=ksGnranFsGkranF
49 48 rabbidv n=ks|sGnranF=s|sGkranF
50 14 rabex s|sGkranFV
51 49 6 50 fvmpt kTk=s|sGkranF
52 34 51 syl φmwTmkwTkTk=s|sGkranF
53 45 52 eleqtrd φmwTmkwTkws|sGkranF
54 oveq1 s=wsGk=wGk
55 54 eleq1d s=wsGkranFwGkranF
56 55 elrab ws|sGkranFwwGkranF
57 53 56 sylib φmwTmkwTkwwGkranF
58 57 simprd φmwTmkwTkwGkranF
59 42 58 sseldd φmwTmkwTkwGk01
60 24 33 37 nnncan1d φmwTmkwTkw-Gm-wGk=GkGm
61 qsubcl GkGmGkGm
62 35 31 61 syl2anc φmwTmkwTkGkGm
63 60 62 eqeltrd φmwTmkwTkw-Gm-wGk
64 oveq12 x=wGmy=wGkxy=w-Gm-wGk
65 64 eleq1d x=wGmy=wGkxyw-Gm-wGk
66 65 1 brab2a wGm˙wGkwGm01wGk01w-Gm-wGk
67 44 59 63 66 syl21anbrc φmwTmkwTkwGm˙wGk
68 39 67 erthi φmwTmkwTkwGm˙=wGk˙
69 68 fveq2d φmwTmkwTkFwGm˙=FwGk˙
70 eceq1 z=wGmz˙=wGm˙
71 70 fveq2d z=wGmFz˙=FwGm˙
72 id z=wGmz=wGm
73 71 72 eqeq12d z=wGmFz˙=zFwGm˙=wGm
74 fveq2 v˙=wFv˙=Fw
75 74 eceq1d v˙=wFv˙˙=Fw˙
76 75 fveq2d v˙=wFFv˙˙=FFw˙
77 76 74 eqeq12d v˙=wFFv˙˙=Fv˙FFw˙=Fw
78 38 a1i φv01˙Er01
79 simpr φv01v01
80 erdm ˙Er01dom˙=01
81 38 80 ax-mp dom˙=01
82 81 eleq2i vdom˙v01
83 ecdmn0 vdom˙v˙
84 82 83 bitr3i v01v˙
85 79 84 sylib φv01v˙
86 neeq1 z=v˙zv˙
87 fveq2 z=v˙Fz=Fv˙
88 id z=v˙z=v˙
89 87 88 eleq12d z=v˙FzzFv˙v˙
90 86 89 imbi12d z=v˙zFzzv˙Fv˙v˙
91 4 adantr φv01zSzFzz
92 ovex 01V
93 erex ˙Er0101V˙V
94 38 92 93 mp2 ˙V
95 94 ecelqsi v01v˙01/˙
96 95 2 eleqtrrdi v01v˙S
97 96 adantl φv01v˙S
98 90 91 97 rspcdva φv01v˙Fv˙v˙
99 85 98 mpd φv01Fv˙v˙
100 fvex Fv˙V
101 vex vV
102 100 101 elec Fv˙v˙v˙Fv˙
103 99 102 sylib φv01v˙Fv˙
104 78 103 erthi φv01v˙=Fv˙˙
105 104 eqcomd φv01Fv˙˙=v˙
106 105 fveq2d φv01FFv˙˙=Fv˙
107 2 77 106 ectocld φwSFFw˙=Fw
108 107 ralrimiva φwSFFw˙=Fw
109 eceq1 z=Fwz˙=Fw˙
110 109 fveq2d z=FwFz˙=FFw˙
111 id z=Fwz=Fw
112 110 111 eqeq12d z=FwFz˙=zFFw˙=Fw
113 112 ralrn FFnSzranFFz˙=zwSFFw˙=Fw
114 3 113 syl φzranFFz˙=zwSFFw˙=Fw
115 108 114 mpbird φzranFFz˙=z
116 115 adantr φmwTmkwTkzranFFz˙=z
117 73 116 43 rspcdva φmwTmkwTkFwGm˙=wGm
118 eceq1 z=wGkz˙=wGk˙
119 118 fveq2d z=wGkFz˙=FwGk˙
120 id z=wGkz=wGk
121 119 120 eqeq12d z=wGkFz˙=zFwGk˙=wGk
122 121 116 58 rspcdva φmwTmkwTkFwGk˙=wGk
123 69 117 122 3eqtr3d φmwTmkwTkwGm=wGk
124 24 33 37 123 subcand φmwTmkwTkGm=Gk
125 5 adantr φmwTmkwTkG:1-1 onto11
126 f1of1 G:1-1 onto11G:1-111
127 125 126 syl φmwTmkwTkG:1-111
128 f1fveq G:1-111mkGm=Gkm=k
129 127 9 34 128 syl12anc φmwTmkwTkGm=Gkm=k
130 124 129 mpbid φmwTmkwTkm=k
131 130 ex φmwTmkwTkm=k
132 131 alrimivv φmkmwTmkwTkm=k
133 eleq1w m=kmk
134 fveq2 m=kTm=Tk
135 134 eleq2d m=kwTmwTk
136 133 135 anbi12d m=kmwTmkwTk
137 136 mo4 *mmwTmmkmwTmkwTkm=k
138 132 137 sylibr φ*mmwTm
139 138 alrimiv φw*mmwTm
140 dfdisj2 DisjmTmw*mmwTm
141 139 140 sylibr φDisjmTm