Metamath Proof Explorer


Theorem zetacvg

Description: The zeta series is convergent. (Contributed by Mario Carneiro, 18-Jul-2014)

Ref Expression
Hypotheses zetacvg.1 φ S
zetacvg.2 φ 1 < S
zetacvg.3 φ k F k = k S
Assertion zetacvg φ seq 1 + F dom

Proof

Step Hyp Ref Expression
1 zetacvg.1 φ S
2 zetacvg.2 φ 1 < S
3 zetacvg.3 φ k F k = k S
4 nnuz = 1
5 1zzd φ 1
6 oveq1 n = k n S = k S
7 eqid n n S = n n S
8 ovex k S V
9 6 7 8 fvmpt k n n S k = k S
10 9 adantl φ k n n S k = k S
11 nncn k k
12 11 adantl φ k k
13 nnne0 k k 0
14 13 adantl φ k k 0
15 1 negcld φ S
16 15 adantr φ k S
17 12 14 16 cxpefd φ k k S = e S log k
18 3 17 eqtrd φ k F k = e S log k
19 18 fveq2d φ k F k = e S log k
20 nnrp k k +
21 20 relogcld k log k
22 21 recnd k log k
23 mulcl S log k S log k
24 15 22 23 syl2an φ k S log k
25 absef S log k e S log k = e S log k
26 24 25 syl φ k e S log k = e S log k
27 remul S log k S log k = S log k S log k
28 15 22 27 syl2an φ k S log k = S log k S log k
29 1 renegd φ S = S
30 21 rered k log k = log k
31 29 30 oveqan12d φ k S log k = S log k
32 21 reim0d k log k = 0
33 32 oveq2d k S log k = S 0
34 imcl S S
35 34 recnd S S
36 15 35 syl φ S
37 36 mul01d φ S 0 = 0
38 33 37 sylan9eqr φ k S log k = 0
39 31 38 oveq12d φ k S log k S log k = S log k 0
40 1 recld φ S
41 40 renegcld φ S
42 41 recnd φ S
43 mulcl S log k S log k
44 42 22 43 syl2an φ k S log k
45 44 subid1d φ k S log k 0 = S log k
46 28 39 45 3eqtrd φ k S log k = S log k
47 46 fveq2d φ k e S log k = e S log k
48 42 adantr φ k S
49 12 14 48 cxpefd φ k k S = e S log k
50 47 49 eqtr4d φ k e S log k = k S
51 19 26 50 3eqtrd φ k F k = k S
52 10 51 eqtr4d φ k n n S k = F k
53 12 16 cxpcld φ k k S
54 3 53 eqeltrd φ k F k
55 2rp 2 +
56 1re 1
57 resubcl 1 S 1 S
58 56 40 57 sylancr φ 1 S
59 rpcxpcl 2 + 1 S 2 1 S +
60 55 58 59 sylancr φ 2 1 S +
61 60 rpcnd φ 2 1 S
62 recl S S
63 62 recnd S S
64 1 63 syl φ S
65 64 addid2d φ 0 + S = S
66 2 65 breqtrrd φ 1 < 0 + S
67 0re 0
68 ltsubadd 1 S 0 1 S < 0 1 < 0 + S
69 56 67 68 mp3an13 S 1 S < 0 1 < 0 + S
70 40 69 syl φ 1 S < 0 1 < 0 + S
71 66 70 mpbird φ 1 S < 0
72 2re 2
73 1lt2 1 < 2
74 cxplt 2 1 < 2 1 S 0 1 S < 0 2 1 S < 2 0
75 72 73 74 mpanl12 1 S 0 1 S < 0 2 1 S < 2 0
76 58 67 75 sylancl φ 1 S < 0 2 1 S < 2 0
77 71 76 mpbid φ 2 1 S < 2 0
78 60 rprege0d φ 2 1 S 0 2 1 S
79 absid 2 1 S 0 2 1 S 2 1 S = 2 1 S
80 78 79 syl φ 2 1 S = 2 1 S
81 2cn 2
82 cxp0 2 2 0 = 1
83 81 82 ax-mp 2 0 = 1
84 83 eqcomi 1 = 2 0
85 84 a1i φ 1 = 2 0
86 77 80 85 3brtr4d φ 2 1 S < 1
87 oveq2 n = m 2 1 S n = 2 1 S m
88 eqid n 0 2 1 S n = n 0 2 1 S n
89 ovex 2 1 S m V
90 87 88 89 fvmpt m 0 n 0 2 1 S n m = 2 1 S m
91 90 adantl φ m 0 n 0 2 1 S n m = 2 1 S m
92 61 86 91 geolim φ seq 0 + n 0 2 1 S n 1 1 2 1 S
93 seqex seq 0 + n 0 2 1 S n V
94 ovex 1 1 2 1 S V
95 93 94 breldm seq 0 + n 0 2 1 S n 1 1 2 1 S seq 0 + n 0 2 1 S n dom
96 92 95 syl φ seq 0 + n 0 2 1 S n dom
97 rpcxpcl k + S k S +
98 20 41 97 syl2anr φ k k S +
99 98 rpred φ k k S
100 10 99 eqeltrd φ k n n S k
101 98 rpge0d φ k 0 k S
102 101 10 breqtrrd φ k 0 n n S k
103 nnre k k
104 103 lep1d k k k + 1
105 20 reeflogd k e log k = k
106 peano2nn k k + 1
107 106 nnrpd k k + 1 +
108 107 reeflogd k e log k + 1 = k + 1
109 104 105 108 3brtr4d k e log k e log k + 1
110 107 relogcld k log k + 1
111 efle log k log k + 1 log k log k + 1 e log k e log k + 1
112 21 110 111 syl2anc k log k log k + 1 e log k e log k + 1
113 109 112 mpbird k log k log k + 1
114 113 adantl φ k log k log k + 1
115 21 adantl φ k log k
116 106 adantl φ k k + 1
117 116 nnrpd φ k k + 1 +
118 117 relogcld φ k log k + 1
119 40 adantr φ k S
120 67 a1i φ 0
121 56 a1i φ 1
122 0lt1 0 < 1
123 122 a1i φ 0 < 1
124 120 121 40 123 2 lttrd φ 0 < S
125 124 adantr φ k 0 < S
126 lemul2 log k log k + 1 S 0 < S log k log k + 1 S log k S log k + 1
127 115 118 119 125 126 syl112anc φ k log k log k + 1 S log k S log k + 1
128 114 127 mpbid φ k S log k S log k + 1
129 remulcl S log k S log k
130 40 21 129 syl2an φ k S log k
131 remulcl S log k + 1 S log k + 1
132 40 110 131 syl2an φ k S log k + 1
133 130 132 lenegd φ k S log k S log k + 1 S log k + 1 S log k
134 128 133 mpbid φ k S log k + 1 S log k
135 110 recnd k log k + 1
136 mulneg1 S log k + 1 S log k + 1 = S log k + 1
137 64 135 136 syl2an φ k S log k + 1 = S log k + 1
138 mulneg1 S log k S log k = S log k
139 64 22 138 syl2an φ k S log k = S log k
140 134 137 139 3brtr4d φ k S log k + 1 S log k
141 remulcl S log k + 1 S log k + 1
142 41 110 141 syl2an φ k S log k + 1
143 remulcl S log k S log k
144 41 21 143 syl2an φ k S log k
145 efle S log k + 1 S log k S log k + 1 S log k e S log k + 1 e S log k
146 142 144 145 syl2anc φ k S log k + 1 S log k e S log k + 1 e S log k
147 140 146 mpbid φ k e S log k + 1 e S log k
148 oveq1 n = k + 1 n S = k + 1 S
149 ovex k + 1 S V
150 148 7 149 fvmpt k + 1 n n S k + 1 = k + 1 S
151 116 150 syl φ k n n S k + 1 = k + 1 S
152 116 nncnd φ k k + 1
153 116 nnne0d φ k k + 1 0
154 152 153 48 cxpefd φ k k + 1 S = e S log k + 1
155 151 154 eqtrd φ k n n S k + 1 = e S log k + 1
156 10 49 eqtrd φ k n n S k = e S log k
157 147 155 156 3brtr4d φ k n n S k + 1 n n S k
158 58 recnd φ 1 S
159 158 adantr φ m 0 1 S
160 nn0re m 0 m
161 160 adantl φ m 0 m
162 161 recnd φ m 0 m
163 159 162 mulcomd φ m 0 1 S m = m 1 S
164 163 oveq2d φ m 0 2 1 S m = 2 m 1 S
165 55 a1i φ m 0 2 +
166 165 161 159 cxpmuld φ m 0 2 m 1 S = 2 m 1 S
167 simpr φ m 0 m 0
168 cxpexp 2 m 0 2 m = 2 m
169 81 167 168 sylancr φ m 0 2 m = 2 m
170 ax-1cn 1
171 64 adantr φ m 0 S
172 negsub 1 S 1 + S = 1 S
173 170 171 172 sylancr φ m 0 1 + S = 1 S
174 173 eqcomd φ m 0 1 S = 1 + S
175 169 174 oveq12d φ m 0 2 m 1 S = 2 m 1 + S
176 164 166 175 3eqtrd φ m 0 2 1 S m = 2 m 1 + S
177 58 adantr φ m 0 1 S
178 165 177 162 cxpmuld φ m 0 2 1 S m = 2 1 S m
179 2nn 2
180 nnexpcl 2 m 0 2 m
181 179 180 mpan m 0 2 m
182 181 adantl φ m 0 2 m
183 182 nncnd φ m 0 2 m
184 182 nnne0d φ m 0 2 m 0
185 1cnd φ m 0 1
186 42 adantr φ m 0 S
187 183 184 185 186 cxpaddd φ m 0 2 m 1 + S = 2 m 1 2 m S
188 176 178 187 3eqtr3d φ m 0 2 1 S m = 2 m 1 2 m S
189 cxpexp 2 1 S m 0 2 1 S m = 2 1 S m
190 61 189 sylan φ m 0 2 1 S m = 2 1 S m
191 183 cxp1d φ m 0 2 m 1 = 2 m
192 191 oveq1d φ m 0 2 m 1 2 m S = 2 m 2 m S
193 188 190 192 3eqtr3d φ m 0 2 1 S m = 2 m 2 m S
194 179 167 180 sylancr φ m 0 2 m
195 oveq1 n = 2 m n S = 2 m S
196 ovex 2 m S V
197 195 7 196 fvmpt 2 m n n S 2 m = 2 m S
198 194 197 syl φ m 0 n n S 2 m = 2 m S
199 198 oveq2d φ m 0 2 m n n S 2 m = 2 m 2 m S
200 193 91 199 3eqtr4d φ m 0 n 0 2 1 S n m = 2 m n n S 2 m
201 100 102 157 200 climcnds φ seq 1 + n n S dom seq 0 + n 0 2 1 S n dom
202 96 201 mpbird φ seq 1 + n n S dom
203 4 5 52 54 202 abscvgcvg φ seq 1 + F dom