| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sq.1 |
⊢ 𝑆 = ran ( 𝑤 ∈ ℤ[i] ↦ ( ( abs ‘ 𝑤 ) ↑ 2 ) ) |
| 2 |
|
2sqlem7.2 |
⊢ 𝑌 = { 𝑧 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) } |
| 3 |
|
2sqlem9.5 |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 1 ... ( 𝑀 − 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) |
| 4 |
|
2sqlem9.7 |
⊢ ( 𝜑 → 𝑀 ∥ 𝑁 ) |
| 5 |
|
2sqlem8.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
2sqlem8.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 2 ) ) |
| 7 |
|
2sqlem8.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 8 |
|
2sqlem8.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 9 |
|
2sqlem8.3 |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) = 1 ) |
| 10 |
|
2sqlem8.4 |
⊢ ( 𝜑 → 𝑁 = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 11 |
|
2sqlem8.c |
⊢ 𝐶 = ( ( ( 𝐴 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 12 |
|
2sqlem8.d |
⊢ 𝐷 = ( ( ( 𝐵 + ( 𝑀 / 2 ) ) mod 𝑀 ) − ( 𝑀 / 2 ) ) |
| 13 |
|
2sqlem8.e |
⊢ 𝐸 = ( 𝐶 / ( 𝐶 gcd 𝐷 ) ) |
| 14 |
|
2sqlem8.f |
⊢ 𝐹 = ( 𝐷 / ( 𝐶 gcd 𝐷 ) ) |
| 15 |
|
eluz2b3 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑀 ∈ ℕ ∧ 𝑀 ≠ 1 ) ) |
| 16 |
6 15
|
sylib |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝑀 ≠ 1 ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 18 |
|
eluzelz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 2 ) → 𝑀 ∈ ℤ ) |
| 19 |
6 18
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 20 |
5
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 21 |
7 17 11
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐶 ∈ ℤ ∧ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ∈ ℤ ) ) |
| 22 |
21
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℤ ) |
| 23 |
|
zsqcl |
⊢ ( 𝐶 ∈ ℤ → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℤ ) |
| 25 |
8 17 12
|
4sqlem5 |
⊢ ( 𝜑 → ( 𝐷 ∈ ℤ ∧ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ∈ ℤ ) ) |
| 26 |
25
|
simpld |
⊢ ( 𝜑 → 𝐷 ∈ ℤ ) |
| 27 |
|
zsqcl |
⊢ ( 𝐷 ∈ ℤ → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 28 |
26 27
|
syl |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℤ ) |
| 29 |
24 28
|
zaddcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) |
| 30 |
|
zsqcl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 31 |
7 30
|
syl |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
| 32 |
31 24
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) − ( 𝐶 ↑ 2 ) ) ∈ ℤ ) |
| 33 |
|
zsqcl |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 34 |
8 33
|
syl |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
| 35 |
34 28
|
zsubcld |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ∈ ℤ ) |
| 36 |
7 17 11
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐴 ↑ 2 ) − ( 𝐶 ↑ 2 ) ) ) |
| 37 |
8 17 12
|
4sqlem8 |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐵 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ) |
| 38 |
19 32 35 36 37
|
dvds2addd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐴 ↑ 2 ) − ( 𝐶 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ) ) |
| 39 |
10
|
oveq1d |
⊢ ( 𝜑 → ( 𝑁 − ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 40 |
31
|
zcnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 41 |
34
|
zcnd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 42 |
24
|
zcnd |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 43 |
28
|
zcnd |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 44 |
40 41 42 43
|
addsub4d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) − ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) − ( 𝐶 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ) ) |
| 45 |
39 44
|
eqtrd |
⊢ ( 𝜑 → ( 𝑁 − ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) − ( 𝐶 ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) − ( 𝐷 ↑ 2 ) ) ) ) |
| 46 |
38 45
|
breqtrrd |
⊢ ( 𝜑 → 𝑀 ∥ ( 𝑁 − ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 47 |
|
dvdssub2 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℤ ) ∧ 𝑀 ∥ ( 𝑁 − ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 48 |
19 20 29 46 47
|
syl31anc |
⊢ ( 𝜑 → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 49 |
4 48
|
mpbid |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 50 |
1 2 3 4 5 6 7 8 9 10 11 12
|
2sqlem8a |
⊢ ( 𝜑 → ( 𝐶 gcd 𝐷 ) ∈ ℕ ) |
| 51 |
50
|
nnzd |
⊢ ( 𝜑 → ( 𝐶 gcd 𝐷 ) ∈ ℤ ) |
| 52 |
|
zsqcl2 |
⊢ ( ( 𝐶 gcd 𝐷 ) ∈ ℤ → ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ∈ ℕ0 ) |
| 53 |
51 52
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ∈ ℕ0 ) |
| 54 |
53
|
nn0cnd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ∈ ℂ ) |
| 55 |
|
gcddvds |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( ( 𝐶 gcd 𝐷 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝐷 ) ∥ 𝐷 ) ) |
| 56 |
22 26 55
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) ∥ 𝐶 ∧ ( 𝐶 gcd 𝐷 ) ∥ 𝐷 ) ) |
| 57 |
56
|
simpld |
⊢ ( 𝜑 → ( 𝐶 gcd 𝐷 ) ∥ 𝐶 ) |
| 58 |
50
|
nnne0d |
⊢ ( 𝜑 → ( 𝐶 gcd 𝐷 ) ≠ 0 ) |
| 59 |
|
dvdsval2 |
⊢ ( ( ( 𝐶 gcd 𝐷 ) ∈ ℤ ∧ ( 𝐶 gcd 𝐷 ) ≠ 0 ∧ 𝐶 ∈ ℤ ) → ( ( 𝐶 gcd 𝐷 ) ∥ 𝐶 ↔ ( 𝐶 / ( 𝐶 gcd 𝐷 ) ) ∈ ℤ ) ) |
| 60 |
51 58 22 59
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) ∥ 𝐶 ↔ ( 𝐶 / ( 𝐶 gcd 𝐷 ) ) ∈ ℤ ) ) |
| 61 |
57 60
|
mpbid |
⊢ ( 𝜑 → ( 𝐶 / ( 𝐶 gcd 𝐷 ) ) ∈ ℤ ) |
| 62 |
13 61
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℤ ) |
| 63 |
|
zsqcl2 |
⊢ ( 𝐸 ∈ ℤ → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
| 64 |
62 63
|
syl |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℕ0 ) |
| 65 |
64
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℂ ) |
| 66 |
56
|
simprd |
⊢ ( 𝜑 → ( 𝐶 gcd 𝐷 ) ∥ 𝐷 ) |
| 67 |
|
dvdsval2 |
⊢ ( ( ( 𝐶 gcd 𝐷 ) ∈ ℤ ∧ ( 𝐶 gcd 𝐷 ) ≠ 0 ∧ 𝐷 ∈ ℤ ) → ( ( 𝐶 gcd 𝐷 ) ∥ 𝐷 ↔ ( 𝐷 / ( 𝐶 gcd 𝐷 ) ) ∈ ℤ ) ) |
| 68 |
51 58 26 67
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) ∥ 𝐷 ↔ ( 𝐷 / ( 𝐶 gcd 𝐷 ) ) ∈ ℤ ) ) |
| 69 |
66 68
|
mpbid |
⊢ ( 𝜑 → ( 𝐷 / ( 𝐶 gcd 𝐷 ) ) ∈ ℤ ) |
| 70 |
14 69
|
eqeltrid |
⊢ ( 𝜑 → 𝐹 ∈ ℤ ) |
| 71 |
|
zsqcl2 |
⊢ ( 𝐹 ∈ ℤ → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
| 72 |
70 71
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℕ0 ) |
| 73 |
72
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℂ ) |
| 74 |
54 65 73
|
adddid |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = ( ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) + ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) ) |
| 75 |
51
|
zcnd |
⊢ ( 𝜑 → ( 𝐶 gcd 𝐷 ) ∈ ℂ ) |
| 76 |
62
|
zcnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 77 |
75 76
|
sqmuld |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) · 𝐸 ) ↑ 2 ) = ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) ) |
| 78 |
13
|
oveq2i |
⊢ ( ( 𝐶 gcd 𝐷 ) · 𝐸 ) = ( ( 𝐶 gcd 𝐷 ) · ( 𝐶 / ( 𝐶 gcd 𝐷 ) ) ) |
| 79 |
22
|
zcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 80 |
79 75 58
|
divcan2d |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) · ( 𝐶 / ( 𝐶 gcd 𝐷 ) ) ) = 𝐶 ) |
| 81 |
78 80
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) · 𝐸 ) = 𝐶 ) |
| 82 |
81
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) · 𝐸 ) ↑ 2 ) = ( 𝐶 ↑ 2 ) ) |
| 83 |
77 82
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
| 84 |
70
|
zcnd |
⊢ ( 𝜑 → 𝐹 ∈ ℂ ) |
| 85 |
75 84
|
sqmuld |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) · 𝐹 ) ↑ 2 ) = ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) |
| 86 |
14
|
oveq2i |
⊢ ( ( 𝐶 gcd 𝐷 ) · 𝐹 ) = ( ( 𝐶 gcd 𝐷 ) · ( 𝐷 / ( 𝐶 gcd 𝐷 ) ) ) |
| 87 |
26
|
zcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 88 |
87 75 58
|
divcan2d |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) · ( 𝐷 / ( 𝐶 gcd 𝐷 ) ) ) = 𝐷 ) |
| 89 |
86 88
|
eqtrid |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) · 𝐹 ) = 𝐷 ) |
| 90 |
89
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) · 𝐹 ) ↑ 2 ) = ( 𝐷 ↑ 2 ) ) |
| 91 |
85 90
|
eqtr3d |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( 𝐹 ↑ 2 ) ) = ( 𝐷 ↑ 2 ) ) |
| 92 |
83 91
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( 𝐸 ↑ 2 ) ) + ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( 𝐹 ↑ 2 ) ) ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 93 |
74 92
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 94 |
49 93
|
breqtrrd |
⊢ ( 𝜑 → 𝑀 ∥ ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 95 |
|
zsqcl |
⊢ ( ( 𝐶 gcd 𝐷 ) ∈ ℤ → ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ∈ ℤ ) |
| 96 |
51 95
|
syl |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ∈ ℤ ) |
| 97 |
19 96
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑀 gcd ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ) = ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) gcd 𝑀 ) ) |
| 98 |
51 19
|
gcdcld |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∈ ℕ0 ) |
| 99 |
98
|
nn0zd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∈ ℤ ) |
| 100 |
|
gcddvds |
⊢ ( ( ( 𝐶 gcd 𝐷 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ ( 𝐶 gcd 𝐷 ) ∧ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝑀 ) ) |
| 101 |
51 19 100
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ ( 𝐶 gcd 𝐷 ) ∧ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝑀 ) ) |
| 102 |
101
|
simpld |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ ( 𝐶 gcd 𝐷 ) ) |
| 103 |
99 51 22 102 57
|
dvdstrd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐶 ) |
| 104 |
7 22
|
zsubcld |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) ∈ ℤ ) |
| 105 |
101
|
simprd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝑀 ) |
| 106 |
21
|
simprd |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐶 ) / 𝑀 ) ∈ ℤ ) |
| 107 |
17
|
nnne0d |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 108 |
|
dvdsval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ( 𝐴 − 𝐶 ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝐴 − 𝐶 ) ↔ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ∈ ℤ ) ) |
| 109 |
19 107 104 108
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ∥ ( 𝐴 − 𝐶 ) ↔ ( ( 𝐴 − 𝐶 ) / 𝑀 ) ∈ ℤ ) ) |
| 110 |
106 109
|
mpbird |
⊢ ( 𝜑 → 𝑀 ∥ ( 𝐴 − 𝐶 ) ) |
| 111 |
99 19 104 105 110
|
dvdstrd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ ( 𝐴 − 𝐶 ) ) |
| 112 |
|
dvdssub2 |
⊢ ( ( ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ ( 𝐴 − 𝐶 ) ) → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐴 ↔ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐶 ) ) |
| 113 |
99 7 22 111 112
|
syl31anc |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐴 ↔ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐶 ) ) |
| 114 |
103 113
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐴 ) |
| 115 |
99 51 26 102 66
|
dvdstrd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐷 ) |
| 116 |
8 26
|
zsubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐷 ) ∈ ℤ ) |
| 117 |
25
|
simprd |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐷 ) / 𝑀 ) ∈ ℤ ) |
| 118 |
|
dvdsval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ( 𝐵 − 𝐷 ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝐵 − 𝐷 ) ↔ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ∈ ℤ ) ) |
| 119 |
19 107 116 118
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ∥ ( 𝐵 − 𝐷 ) ↔ ( ( 𝐵 − 𝐷 ) / 𝑀 ) ∈ ℤ ) ) |
| 120 |
117 119
|
mpbird |
⊢ ( 𝜑 → 𝑀 ∥ ( 𝐵 − 𝐷 ) ) |
| 121 |
99 19 116 105 120
|
dvdstrd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ ( 𝐵 − 𝐷 ) ) |
| 122 |
|
dvdssub2 |
⊢ ( ( ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ) ∧ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ ( 𝐵 − 𝐷 ) ) → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐵 ↔ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐷 ) ) |
| 123 |
99 8 26 121 122
|
syl31anc |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐵 ↔ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐷 ) ) |
| 124 |
115 123
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐵 ) |
| 125 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 126 |
125
|
a1i |
⊢ ( 𝜑 → 1 ≠ 0 ) |
| 127 |
9 126
|
eqnetrd |
⊢ ( 𝜑 → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 128 |
127
|
neneqd |
⊢ ( 𝜑 → ¬ ( 𝐴 gcd 𝐵 ) = 0 ) |
| 129 |
|
gcdeq0 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 130 |
7 8 129
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 gcd 𝐵 ) = 0 ↔ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) ) |
| 131 |
128 130
|
mtbid |
⊢ ( 𝜑 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
| 132 |
|
dvdslegcd |
⊢ ( ( ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐴 ∧ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐵 ) → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ≤ ( 𝐴 gcd 𝐵 ) ) ) |
| 133 |
99 7 8 131 132
|
syl31anc |
⊢ ( 𝜑 → ( ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐴 ∧ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∥ 𝐵 ) → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ≤ ( 𝐴 gcd 𝐵 ) ) ) |
| 134 |
114 124 133
|
mp2and |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ≤ ( 𝐴 gcd 𝐵 ) ) |
| 135 |
134 9
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ≤ 1 ) |
| 136 |
|
simpr |
⊢ ( ( ( 𝐶 gcd 𝐷 ) = 0 ∧ 𝑀 = 0 ) → 𝑀 = 0 ) |
| 137 |
136
|
necon3ai |
⊢ ( 𝑀 ≠ 0 → ¬ ( ( 𝐶 gcd 𝐷 ) = 0 ∧ 𝑀 = 0 ) ) |
| 138 |
107 137
|
syl |
⊢ ( 𝜑 → ¬ ( ( 𝐶 gcd 𝐷 ) = 0 ∧ 𝑀 = 0 ) ) |
| 139 |
|
gcdn0cl |
⊢ ( ( ( ( 𝐶 gcd 𝐷 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ¬ ( ( 𝐶 gcd 𝐷 ) = 0 ∧ 𝑀 = 0 ) ) → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∈ ℕ ) |
| 140 |
51 19 138 139
|
syl21anc |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∈ ℕ ) |
| 141 |
|
nnle1eq1 |
⊢ ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ∈ ℕ → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ≤ 1 ↔ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) = 1 ) ) |
| 142 |
140 141
|
syl |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) ≤ 1 ↔ ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) = 1 ) ) |
| 143 |
135 142
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) = 1 ) |
| 144 |
|
2nn |
⊢ 2 ∈ ℕ |
| 145 |
144
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 146 |
|
rplpwr |
⊢ ( ( ( 𝐶 gcd 𝐷 ) ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) = 1 → ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) gcd 𝑀 ) = 1 ) ) |
| 147 |
50 17 145 146
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) gcd 𝑀 ) = 1 → ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) gcd 𝑀 ) = 1 ) ) |
| 148 |
143 147
|
mpd |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) gcd 𝑀 ) = 1 ) |
| 149 |
97 148
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 gcd ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ) = 1 ) |
| 150 |
64 72
|
nn0addcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℕ0 ) |
| 151 |
150
|
nn0zd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℤ ) |
| 152 |
|
coprmdvds |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ∈ ℤ ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℤ ) → ( ( 𝑀 ∥ ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ∧ ( 𝑀 gcd ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ) = 1 ) → 𝑀 ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 153 |
19 96 151 152
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑀 ∥ ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ∧ ( 𝑀 gcd ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ) = 1 ) → 𝑀 ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 154 |
94 149 153
|
mp2and |
⊢ ( 𝜑 → 𝑀 ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 155 |
|
dvdsval2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℤ ) → ( 𝑀 ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℤ ) ) |
| 156 |
19 107 151 155
|
syl3anc |
⊢ ( 𝜑 → ( 𝑀 ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℤ ) ) |
| 157 |
154 156
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℤ ) |
| 158 |
64
|
nn0red |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
| 159 |
72
|
nn0red |
⊢ ( 𝜑 → ( 𝐹 ↑ 2 ) ∈ ℝ ) |
| 160 |
158 159
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℝ ) |
| 161 |
17
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 162 |
1 2
|
2sqlem7 |
⊢ 𝑌 ⊆ ( 𝑆 ∩ ℕ ) |
| 163 |
|
inss2 |
⊢ ( 𝑆 ∩ ℕ ) ⊆ ℕ |
| 164 |
162 163
|
sstri |
⊢ 𝑌 ⊆ ℕ |
| 165 |
62 70
|
gcdcld |
⊢ ( 𝜑 → ( 𝐸 gcd 𝐹 ) ∈ ℕ0 ) |
| 166 |
165
|
nn0cnd |
⊢ ( 𝜑 → ( 𝐸 gcd 𝐹 ) ∈ ℂ ) |
| 167 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 168 |
75
|
mulridd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) · 1 ) = ( 𝐶 gcd 𝐷 ) ) |
| 169 |
81 89
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) · 𝐸 ) gcd ( ( 𝐶 gcd 𝐷 ) · 𝐹 ) ) = ( 𝐶 gcd 𝐷 ) ) |
| 170 |
22 26
|
gcdcld |
⊢ ( 𝜑 → ( 𝐶 gcd 𝐷 ) ∈ ℕ0 ) |
| 171 |
|
mulgcd |
⊢ ( ( ( 𝐶 gcd 𝐷 ) ∈ ℕ0 ∧ 𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ) → ( ( ( 𝐶 gcd 𝐷 ) · 𝐸 ) gcd ( ( 𝐶 gcd 𝐷 ) · 𝐹 ) ) = ( ( 𝐶 gcd 𝐷 ) · ( 𝐸 gcd 𝐹 ) ) ) |
| 172 |
170 62 70 171
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝐶 gcd 𝐷 ) · 𝐸 ) gcd ( ( 𝐶 gcd 𝐷 ) · 𝐹 ) ) = ( ( 𝐶 gcd 𝐷 ) · ( 𝐸 gcd 𝐹 ) ) ) |
| 173 |
168 169 172
|
3eqtr2rd |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) · ( 𝐸 gcd 𝐹 ) ) = ( ( 𝐶 gcd 𝐷 ) · 1 ) ) |
| 174 |
166 167 75 58 173
|
mulcanad |
⊢ ( 𝜑 → ( 𝐸 gcd 𝐹 ) = 1 ) |
| 175 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 176 |
|
oveq1 |
⊢ ( 𝑥 = 𝐸 → ( 𝑥 gcd 𝑦 ) = ( 𝐸 gcd 𝑦 ) ) |
| 177 |
176
|
eqeq1d |
⊢ ( 𝑥 = 𝐸 → ( ( 𝑥 gcd 𝑦 ) = 1 ↔ ( 𝐸 gcd 𝑦 ) = 1 ) ) |
| 178 |
|
oveq1 |
⊢ ( 𝑥 = 𝐸 → ( 𝑥 ↑ 2 ) = ( 𝐸 ↑ 2 ) ) |
| 179 |
178
|
oveq1d |
⊢ ( 𝑥 = 𝐸 → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) |
| 180 |
179
|
eqeq2d |
⊢ ( 𝑥 = 𝐸 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 181 |
177 180
|
anbi12d |
⊢ ( 𝑥 = 𝐸 → ( ( ( 𝑥 gcd 𝑦 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( ( 𝐸 gcd 𝑦 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 182 |
|
oveq2 |
⊢ ( 𝑦 = 𝐹 → ( 𝐸 gcd 𝑦 ) = ( 𝐸 gcd 𝐹 ) ) |
| 183 |
182
|
eqeq1d |
⊢ ( 𝑦 = 𝐹 → ( ( 𝐸 gcd 𝑦 ) = 1 ↔ ( 𝐸 gcd 𝐹 ) = 1 ) ) |
| 184 |
|
oveq1 |
⊢ ( 𝑦 = 𝐹 → ( 𝑦 ↑ 2 ) = ( 𝐹 ↑ 2 ) ) |
| 185 |
184
|
oveq2d |
⊢ ( 𝑦 = 𝐹 → ( ( 𝐸 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 186 |
185
|
eqeq2d |
⊢ ( 𝑦 = 𝐹 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 187 |
183 186
|
anbi12d |
⊢ ( 𝑦 = 𝐹 → ( ( ( 𝐸 gcd 𝑦 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( ( 𝐸 gcd 𝐹 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) ) |
| 188 |
181 187
|
rspc2ev |
⊢ ( ( 𝐸 ∈ ℤ ∧ 𝐹 ∈ ℤ ∧ ( ( 𝐸 gcd 𝐹 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 189 |
62 70 174 175 188
|
syl112anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 190 |
|
ovex |
⊢ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ V |
| 191 |
|
eqeq1 |
⊢ ( 𝑧 = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) → ( 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ↔ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 192 |
191
|
anbi2d |
⊢ ( 𝑧 = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) → ( ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 193 |
192
|
2rexbidv |
⊢ ( 𝑧 = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ 𝑧 = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) ) |
| 194 |
190 193 2
|
elab2 |
⊢ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ 𝑌 ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ( ( 𝑥 gcd 𝑦 ) = 1 ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) = ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ) ) |
| 195 |
189 194
|
sylibr |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ 𝑌 ) |
| 196 |
164 195
|
sselid |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℕ ) |
| 197 |
196
|
nngt0d |
⊢ ( 𝜑 → 0 < ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 198 |
17
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑀 ) |
| 199 |
160 161 197 198
|
divgt0d |
⊢ ( 𝜑 → 0 < ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) |
| 200 |
|
elnnz |
⊢ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℕ ↔ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℤ ∧ 0 < ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) |
| 201 |
157 199 200
|
sylanbrc |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℕ ) |
| 202 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 203 |
202
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → 𝑝 ∈ ℕ ) |
| 204 |
203
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → 𝑝 ∈ ℝ ) |
| 205 |
157
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℤ ) |
| 206 |
205
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℝ ) |
| 207 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
| 208 |
19 207
|
syl |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℤ ) |
| 209 |
208
|
zred |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ℝ ) |
| 210 |
209
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( 𝑀 − 1 ) ∈ ℝ ) |
| 211 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) |
| 212 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 213 |
212
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → 𝑝 ∈ ℤ ) |
| 214 |
201
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℕ ) |
| 215 |
|
dvdsle |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℕ ) → ( 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) → 𝑝 ≤ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) |
| 216 |
213 214 215
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) → 𝑝 ≤ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) |
| 217 |
211 216
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → 𝑝 ≤ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) |
| 218 |
|
zsqcl |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 219 |
19 218
|
syl |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 220 |
219
|
zred |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℝ ) |
| 221 |
220
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℝ ) |
| 222 |
24
|
zred |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ∈ ℝ ) |
| 223 |
28
|
zred |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℝ ) |
| 224 |
222 223
|
readdcld |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ∈ ℝ ) |
| 225 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 226 |
50
|
nnsqcld |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ∈ ℕ ) |
| 227 |
226
|
nnred |
⊢ ( 𝜑 → ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ∈ ℝ ) |
| 228 |
150
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 229 |
226
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) ) |
| 230 |
225 227 160 228 229
|
lemul1ad |
⊢ ( 𝜑 → ( 1 · ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ≤ ( ( ( 𝐶 gcd 𝐷 ) ↑ 2 ) · ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 231 |
150
|
nn0cnd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℂ ) |
| 232 |
231
|
mullidd |
⊢ ( 𝜑 → ( 1 · ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 233 |
230 232 93
|
3brtr3d |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ≤ ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 234 |
221
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ∈ ℝ ) |
| 235 |
7 17 11
|
4sqlem7 |
⊢ ( 𝜑 → ( 𝐶 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 236 |
8 17 12
|
4sqlem7 |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ≤ ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) |
| 237 |
222 223 234 234 235 236
|
le2addd |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ≤ ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) ) |
| 238 |
221
|
recnd |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 239 |
238
|
2halvesd |
⊢ ( 𝜑 → ( ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) + ( ( ( 𝑀 ↑ 2 ) / 2 ) / 2 ) ) = ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 240 |
237 239
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 241 |
160 224 221 233 240
|
letrd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ≤ ( ( 𝑀 ↑ 2 ) / 2 ) ) |
| 242 |
17
|
nnsqcld |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℕ ) |
| 243 |
242
|
nnrpd |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) ∈ ℝ+ ) |
| 244 |
|
rphalflt |
⊢ ( ( 𝑀 ↑ 2 ) ∈ ℝ+ → ( ( 𝑀 ↑ 2 ) / 2 ) < ( 𝑀 ↑ 2 ) ) |
| 245 |
243 244
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 ↑ 2 ) / 2 ) < ( 𝑀 ↑ 2 ) ) |
| 246 |
160 221 220 241 245
|
lelttrd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) < ( 𝑀 ↑ 2 ) ) |
| 247 |
19
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 248 |
247
|
sqvald |
⊢ ( 𝜑 → ( 𝑀 ↑ 2 ) = ( 𝑀 · 𝑀 ) ) |
| 249 |
246 248
|
breqtrd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) < ( 𝑀 · 𝑀 ) ) |
| 250 |
|
ltdivmul |
⊢ ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) < 𝑀 ↔ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) < ( 𝑀 · 𝑀 ) ) ) |
| 251 |
160 161 161 198 250
|
syl112anc |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) < 𝑀 ↔ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) < ( 𝑀 · 𝑀 ) ) ) |
| 252 |
249 251
|
mpbird |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) < 𝑀 ) |
| 253 |
|
zltlem1 |
⊢ ( ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) < 𝑀 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ≤ ( 𝑀 − 1 ) ) ) |
| 254 |
157 19 253
|
syl2anc |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) < 𝑀 ↔ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ≤ ( 𝑀 − 1 ) ) ) |
| 255 |
252 254
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ≤ ( 𝑀 − 1 ) ) |
| 256 |
255
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ≤ ( 𝑀 − 1 ) ) |
| 257 |
204 206 210 217 256
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → 𝑝 ≤ ( 𝑀 − 1 ) ) |
| 258 |
208
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( 𝑀 − 1 ) ∈ ℤ ) |
| 259 |
|
fznn |
⊢ ( ( 𝑀 − 1 ) ∈ ℤ → ( 𝑝 ∈ ( 1 ... ( 𝑀 − 1 ) ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ ( 𝑀 − 1 ) ) ) ) |
| 260 |
258 259
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( 𝑝 ∈ ( 1 ... ( 𝑀 − 1 ) ) ↔ ( 𝑝 ∈ ℕ ∧ 𝑝 ≤ ( 𝑀 − 1 ) ) ) ) |
| 261 |
203 257 260
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → 𝑝 ∈ ( 1 ... ( 𝑀 − 1 ) ) ) |
| 262 |
195
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ 𝑌 ) |
| 263 |
261 262
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( 𝑝 ∈ ( 1 ... ( 𝑀 − 1 ) ) ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ 𝑌 ) ) |
| 264 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ∀ 𝑏 ∈ ( 1 ... ( 𝑀 − 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ) |
| 265 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ ℤ ) |
| 266 |
|
dvdsmul2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∈ ℤ ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∥ ( 𝑀 · ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) |
| 267 |
19 157 266
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∥ ( 𝑀 · ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) |
| 268 |
231 247 107
|
divcan2d |
⊢ ( 𝜑 → ( 𝑀 · ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 269 |
267 268
|
breqtrd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 270 |
269
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 271 |
213 205 265 211 270
|
dvdstrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → 𝑝 ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) |
| 272 |
|
breq1 |
⊢ ( 𝑏 = 𝑝 → ( 𝑏 ∥ 𝑎 ↔ 𝑝 ∥ 𝑎 ) ) |
| 273 |
|
eleq1w |
⊢ ( 𝑏 = 𝑝 → ( 𝑏 ∈ 𝑆 ↔ 𝑝 ∈ 𝑆 ) ) |
| 274 |
272 273
|
imbi12d |
⊢ ( 𝑏 = 𝑝 → ( ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) ↔ ( 𝑝 ∥ 𝑎 → 𝑝 ∈ 𝑆 ) ) ) |
| 275 |
|
breq2 |
⊢ ( 𝑎 = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) → ( 𝑝 ∥ 𝑎 ↔ 𝑝 ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ) ) |
| 276 |
275
|
imbi1d |
⊢ ( 𝑎 = ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) → ( ( 𝑝 ∥ 𝑎 → 𝑝 ∈ 𝑆 ) ↔ ( 𝑝 ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) → 𝑝 ∈ 𝑆 ) ) ) |
| 277 |
274 276
|
rspc2v |
⊢ ( ( 𝑝 ∈ ( 1 ... ( 𝑀 − 1 ) ) ∧ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ 𝑌 ) → ( ∀ 𝑏 ∈ ( 1 ... ( 𝑀 − 1 ) ) ∀ 𝑎 ∈ 𝑌 ( 𝑏 ∥ 𝑎 → 𝑏 ∈ 𝑆 ) → ( 𝑝 ∥ ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) → 𝑝 ∈ 𝑆 ) ) ) |
| 278 |
263 264 271 277
|
syl3c |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ) → 𝑝 ∈ 𝑆 ) |
| 279 |
278
|
expr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) → 𝑝 ∈ 𝑆 ) ) |
| 280 |
279
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ ℙ ( 𝑝 ∥ ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) → 𝑝 ∈ 𝑆 ) ) |
| 281 |
|
inss1 |
⊢ ( 𝑆 ∩ ℕ ) ⊆ 𝑆 |
| 282 |
162 281
|
sstri |
⊢ 𝑌 ⊆ 𝑆 |
| 283 |
282 195
|
sselid |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) ∈ 𝑆 ) |
| 284 |
268 283
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑀 · ( ( ( 𝐸 ↑ 2 ) + ( 𝐹 ↑ 2 ) ) / 𝑀 ) ) ∈ 𝑆 ) |
| 285 |
1 17 201 280 284
|
2sqlem6 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑆 ) |