Step |
Hyp |
Ref |
Expression |
1 |
|
elrgspn.b |
|- B = ( Base ` R ) |
2 |
|
elrgspn.m |
|- M = ( mulGrp ` R ) |
3 |
|
elrgspn.x |
|- .x. = ( .g ` R ) |
4 |
|
elrgspn.n |
|- N = ( RingSpan ` R ) |
5 |
|
elrgspn.f |
|- F = { f e. ( ZZ ^m Word A ) | f finSupp 0 } |
6 |
|
elrgspn.r |
|- ( ph -> R e. Ring ) |
7 |
|
elrgspn.a |
|- ( ph -> A C_ B ) |
8 |
|
elrgspnlem1.1 |
|- S = ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
9 |
6
|
ringgrpd |
|- ( ph -> R e. Grp ) |
10 |
|
simpr |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
11 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
12 |
6
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
13 |
12
|
adantr |
|- ( ( ph /\ g e. F ) -> R e. CMnd ) |
14 |
1
|
fvexi |
|- B e. _V |
15 |
14
|
a1i |
|- ( ph -> B e. _V ) |
16 |
15 7
|
ssexd |
|- ( ph -> A e. _V ) |
17 |
|
wrdexg |
|- ( A e. _V -> Word A e. _V ) |
18 |
16 17
|
syl |
|- ( ph -> Word A e. _V ) |
19 |
18
|
adantr |
|- ( ( ph /\ g e. F ) -> Word A e. _V ) |
20 |
9
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> R e. Grp ) |
21 |
5
|
ssrab3 |
|- F C_ ( ZZ ^m Word A ) |
22 |
21
|
a1i |
|- ( ph -> F C_ ( ZZ ^m Word A ) ) |
23 |
22
|
sselda |
|- ( ( ph /\ g e. F ) -> g e. ( ZZ ^m Word A ) ) |
24 |
|
zex |
|- ZZ e. _V |
25 |
24
|
a1i |
|- ( ph -> ZZ e. _V ) |
26 |
25 18
|
elmapd |
|- ( ph -> ( g e. ( ZZ ^m Word A ) <-> g : Word A --> ZZ ) ) |
27 |
26
|
adantr |
|- ( ( ph /\ g e. F ) -> ( g e. ( ZZ ^m Word A ) <-> g : Word A --> ZZ ) ) |
28 |
23 27
|
mpbid |
|- ( ( ph /\ g e. F ) -> g : Word A --> ZZ ) |
29 |
28
|
ffvelcdmda |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( g ` w ) e. ZZ ) |
30 |
2
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
31 |
6 30
|
syl |
|- ( ph -> M e. Mnd ) |
32 |
|
sswrd |
|- ( A C_ B -> Word A C_ Word B ) |
33 |
7 32
|
syl |
|- ( ph -> Word A C_ Word B ) |
34 |
33
|
sselda |
|- ( ( ph /\ w e. Word A ) -> w e. Word B ) |
35 |
2 1
|
mgpbas |
|- B = ( Base ` M ) |
36 |
35
|
gsumwcl |
|- ( ( M e. Mnd /\ w e. Word B ) -> ( M gsum w ) e. B ) |
37 |
31 34 36
|
syl2an2r |
|- ( ( ph /\ w e. Word A ) -> ( M gsum w ) e. B ) |
38 |
37
|
adantlr |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( M gsum w ) e. B ) |
39 |
1 3 20 29 38
|
mulgcld |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( g ` w ) .x. ( M gsum w ) ) e. B ) |
40 |
39
|
fmpttd |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) : Word A --> B ) |
41 |
|
fvexd |
|- ( ( ph /\ g e. F ) -> ( 0g ` R ) e. _V ) |
42 |
|
0zd |
|- ( ( ph /\ g e. F ) -> 0 e. ZZ ) |
43 |
|
ssidd |
|- ( ( ph /\ g e. F ) -> Word A C_ Word A ) |
44 |
|
breq1 |
|- ( f = g -> ( f finSupp 0 <-> g finSupp 0 ) ) |
45 |
44 5
|
elrab2 |
|- ( g e. F <-> ( g e. ( ZZ ^m Word A ) /\ g finSupp 0 ) ) |
46 |
45
|
simprbi |
|- ( g e. F -> g finSupp 0 ) |
47 |
46
|
adantl |
|- ( ( ph /\ g e. F ) -> g finSupp 0 ) |
48 |
1 11 3
|
mulg0 |
|- ( y e. B -> ( 0 .x. y ) = ( 0g ` R ) ) |
49 |
48
|
adantl |
|- ( ( ( ph /\ g e. F ) /\ y e. B ) -> ( 0 .x. y ) = ( 0g ` R ) ) |
50 |
41 42 19 43 38 28 47 49
|
fisuppov1 |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
51 |
1 11 13 19 40 50
|
gsumcl |
|- ( ( ph /\ g e. F ) -> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) e. B ) |
52 |
51
|
ad4ant13 |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) e. B ) |
53 |
10 52
|
eqeltrd |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> x e. B ) |
54 |
8
|
eleq2i |
|- ( x e. S <-> x e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
55 |
|
eqid |
|- ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
56 |
55
|
elrnmpt |
|- ( x e. _V -> ( x e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. g e. F x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
57 |
56
|
elv |
|- ( x e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. g e. F x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
58 |
54 57
|
sylbb |
|- ( x e. S -> E. g e. F x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
59 |
58
|
adantl |
|- ( ( ph /\ x e. S ) -> E. g e. F x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
60 |
53 59
|
r19.29a |
|- ( ( ph /\ x e. S ) -> x e. B ) |
61 |
60 1
|
eleqtrdi |
|- ( ( ph /\ x e. S ) -> x e. ( Base ` R ) ) |
62 |
61
|
ex |
|- ( ph -> ( x e. S -> x e. ( Base ` R ) ) ) |
63 |
62
|
ssrdv |
|- ( ph -> S C_ ( Base ` R ) ) |
64 |
63 1
|
sseqtrrdi |
|- ( ph -> S C_ B ) |
65 |
|
breq1 |
|- ( f = ( Word A X. { 0 } ) -> ( f finSupp 0 <-> ( Word A X. { 0 } ) finSupp 0 ) ) |
66 |
|
0z |
|- 0 e. ZZ |
67 |
66
|
fconst6 |
|- ( Word A X. { 0 } ) : Word A --> ZZ |
68 |
67
|
a1i |
|- ( ph -> ( Word A X. { 0 } ) : Word A --> ZZ ) |
69 |
25 18 68
|
elmapdd |
|- ( ph -> ( Word A X. { 0 } ) e. ( ZZ ^m Word A ) ) |
70 |
|
c0ex |
|- 0 e. _V |
71 |
70
|
a1i |
|- ( ph -> 0 e. _V ) |
72 |
18 71
|
fczfsuppd |
|- ( ph -> ( Word A X. { 0 } ) finSupp 0 ) |
73 |
65 69 72
|
elrabd |
|- ( ph -> ( Word A X. { 0 } ) e. { f e. ( ZZ ^m Word A ) | f finSupp 0 } ) |
74 |
73 5
|
eleqtrrdi |
|- ( ph -> ( Word A X. { 0 } ) e. F ) |
75 |
|
simplr |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> g = ( Word A X. { 0 } ) ) |
76 |
75
|
fveq1d |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> ( g ` w ) = ( ( Word A X. { 0 } ) ` w ) ) |
77 |
70
|
fconst |
|- ( Word A X. { 0 } ) : Word A --> { 0 } |
78 |
77
|
a1i |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> ( Word A X. { 0 } ) : Word A --> { 0 } ) |
79 |
|
simpr |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> w e. Word A ) |
80 |
|
fvconst |
|- ( ( ( Word A X. { 0 } ) : Word A --> { 0 } /\ w e. Word A ) -> ( ( Word A X. { 0 } ) ` w ) = 0 ) |
81 |
78 79 80
|
syl2anc |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> ( ( Word A X. { 0 } ) ` w ) = 0 ) |
82 |
76 81
|
eqtrd |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> ( g ` w ) = 0 ) |
83 |
82
|
oveq1d |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> ( ( g ` w ) .x. ( M gsum w ) ) = ( 0 .x. ( M gsum w ) ) ) |
84 |
37
|
adantlr |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> ( M gsum w ) e. B ) |
85 |
1 11 3
|
mulg0 |
|- ( ( M gsum w ) e. B -> ( 0 .x. ( M gsum w ) ) = ( 0g ` R ) ) |
86 |
84 85
|
syl |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> ( 0 .x. ( M gsum w ) ) = ( 0g ` R ) ) |
87 |
83 86
|
eqtrd |
|- ( ( ( ph /\ g = ( Word A X. { 0 } ) ) /\ w e. Word A ) -> ( ( g ` w ) .x. ( M gsum w ) ) = ( 0g ` R ) ) |
88 |
87
|
mpteq2dva |
|- ( ( ph /\ g = ( Word A X. { 0 } ) ) -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( 0g ` R ) ) ) |
89 |
88
|
oveq2d |
|- ( ( ph /\ g = ( Word A X. { 0 } ) ) -> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( 0g ` R ) ) ) ) |
90 |
12
|
cmnmndd |
|- ( ph -> R e. Mnd ) |
91 |
11
|
gsumz |
|- ( ( R e. Mnd /\ Word A e. _V ) -> ( R gsum ( w e. Word A |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
92 |
90 18 91
|
syl2anc |
|- ( ph -> ( R gsum ( w e. Word A |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
93 |
92
|
adantr |
|- ( ( ph /\ g = ( Word A X. { 0 } ) ) -> ( R gsum ( w e. Word A |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
94 |
89 93
|
eqtrd |
|- ( ( ph /\ g = ( Word A X. { 0 } ) ) -> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) = ( 0g ` R ) ) |
95 |
94
|
eqeq2d |
|- ( ( ph /\ g = ( Word A X. { 0 } ) ) -> ( ( 0g ` R ) = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) <-> ( 0g ` R ) = ( 0g ` R ) ) ) |
96 |
|
eqidd |
|- ( ph -> ( 0g ` R ) = ( 0g ` R ) ) |
97 |
74 95 96
|
rspcedvd |
|- ( ph -> E. g e. F ( 0g ` R ) = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
98 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
99 |
55 97 98
|
elrnmptd |
|- ( ph -> ( 0g ` R ) e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
100 |
99 8
|
eleqtrrdi |
|- ( ph -> ( 0g ` R ) e. S ) |
101 |
100
|
ne0d |
|- ( ph -> S =/= (/) ) |
102 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
103 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
104 |
102 103
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> ( x ( +g ` R ) y ) = ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) ) |
105 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
106 |
13
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> R e. CMnd ) |
107 |
19
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> Word A e. _V ) |
108 |
39
|
adantlr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( ( g ` w ) .x. ( M gsum w ) ) e. B ) |
109 |
9
|
ad2antrr |
|- ( ( ( ph /\ i e. F ) /\ w e. Word A ) -> R e. Grp ) |
110 |
|
breq1 |
|- ( f = i -> ( f finSupp 0 <-> i finSupp 0 ) ) |
111 |
110 5
|
elrab2 |
|- ( i e. F <-> ( i e. ( ZZ ^m Word A ) /\ i finSupp 0 ) ) |
112 |
111
|
simplbi |
|- ( i e. F -> i e. ( ZZ ^m Word A ) ) |
113 |
112
|
adantl |
|- ( ( ph /\ i e. F ) -> i e. ( ZZ ^m Word A ) ) |
114 |
25 18
|
elmapd |
|- ( ph -> ( i e. ( ZZ ^m Word A ) <-> i : Word A --> ZZ ) ) |
115 |
114
|
adantr |
|- ( ( ph /\ i e. F ) -> ( i e. ( ZZ ^m Word A ) <-> i : Word A --> ZZ ) ) |
116 |
113 115
|
mpbid |
|- ( ( ph /\ i e. F ) -> i : Word A --> ZZ ) |
117 |
116
|
ffvelcdmda |
|- ( ( ( ph /\ i e. F ) /\ w e. Word A ) -> ( i ` w ) e. ZZ ) |
118 |
37
|
adantlr |
|- ( ( ( ph /\ i e. F ) /\ w e. Word A ) -> ( M gsum w ) e. B ) |
119 |
1 3 109 117 118
|
mulgcld |
|- ( ( ( ph /\ i e. F ) /\ w e. Word A ) -> ( ( i ` w ) .x. ( M gsum w ) ) e. B ) |
120 |
119
|
adantllr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( ( i ` w ) .x. ( M gsum w ) ) e. B ) |
121 |
|
eqidd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) |
122 |
|
eqidd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) |
123 |
50
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
124 |
50
|
ralrimiva |
|- ( ph -> A. g e. F ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
125 |
|
fveq1 |
|- ( g = i -> ( g ` w ) = ( i ` w ) ) |
126 |
125
|
oveq1d |
|- ( g = i -> ( ( g ` w ) .x. ( M gsum w ) ) = ( ( i ` w ) .x. ( M gsum w ) ) ) |
127 |
126
|
mpteq2dv |
|- ( g = i -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) |
128 |
127
|
breq1d |
|- ( g = i -> ( ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) <-> ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) ) |
129 |
128
|
cbvralvw |
|- ( A. g e. F ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) <-> A. i e. F ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
130 |
124 129
|
sylib |
|- ( ph -> A. i e. F ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
131 |
130
|
r19.21bi |
|- ( ( ph /\ i e. F ) -> ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
132 |
131
|
adantlr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
133 |
1 11 105 106 107 108 120 121 122 123 132
|
gsummptfsadd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( w e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) = ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) ) |
134 |
28
|
ffnd |
|- ( ( ph /\ g e. F ) -> g Fn Word A ) |
135 |
134
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> g Fn Word A ) |
136 |
116
|
ffnd |
|- ( ( ph /\ i e. F ) -> i Fn Word A ) |
137 |
136
|
adantlr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> i Fn Word A ) |
138 |
|
inidm |
|- ( Word A i^i Word A ) = Word A |
139 |
|
eqidd |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( g ` w ) = ( g ` w ) ) |
140 |
|
eqidd |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( i ` w ) = ( i ` w ) ) |
141 |
135 137 107 107 138 139 140
|
ofval |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( ( g oF + i ) ` w ) = ( ( g ` w ) + ( i ` w ) ) ) |
142 |
141
|
oveq1d |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) = ( ( ( g ` w ) + ( i ` w ) ) .x. ( M gsum w ) ) ) |
143 |
20
|
adantlr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> R e. Grp ) |
144 |
29
|
adantlr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( g ` w ) e. ZZ ) |
145 |
117
|
adantllr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( i ` w ) e. ZZ ) |
146 |
38
|
adantlr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( M gsum w ) e. B ) |
147 |
1 3 105
|
mulgdir |
|- ( ( R e. Grp /\ ( ( g ` w ) e. ZZ /\ ( i ` w ) e. ZZ /\ ( M gsum w ) e. B ) ) -> ( ( ( g ` w ) + ( i ` w ) ) .x. ( M gsum w ) ) = ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( ( i ` w ) .x. ( M gsum w ) ) ) ) |
148 |
143 144 145 146 147
|
syl13anc |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( ( ( g ` w ) + ( i ` w ) ) .x. ( M gsum w ) ) = ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( ( i ` w ) .x. ( M gsum w ) ) ) ) |
149 |
142 148
|
eqtr2d |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( ( i ` w ) .x. ( M gsum w ) ) ) = ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) |
150 |
149
|
mpteq2dva |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( w e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( ( i ` w ) .x. ( M gsum w ) ) ) ) = ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) |
151 |
150
|
oveq2d |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( w e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) ) |
152 |
133 151
|
eqtr3d |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) ) |
153 |
|
fveq1 |
|- ( g = h -> ( g ` w ) = ( h ` w ) ) |
154 |
153
|
oveq1d |
|- ( g = h -> ( ( g ` w ) .x. ( M gsum w ) ) = ( ( h ` w ) .x. ( M gsum w ) ) ) |
155 |
154
|
mpteq2dv |
|- ( g = h -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) |
156 |
155
|
oveq2d |
|- ( g = h -> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) |
157 |
156
|
cbvmptv |
|- ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) |
158 |
|
fveq1 |
|- ( h = ( g oF + i ) -> ( h ` w ) = ( ( g oF + i ) ` w ) ) |
159 |
158
|
oveq1d |
|- ( h = ( g oF + i ) -> ( ( h ` w ) .x. ( M gsum w ) ) = ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) |
160 |
159
|
mpteq2dv |
|- ( h = ( g oF + i ) -> ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) |
161 |
160
|
oveq2d |
|- ( h = ( g oF + i ) -> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) ) |
162 |
161
|
eqeq2d |
|- ( h = ( g oF + i ) -> ( ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) <-> ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) ) ) |
163 |
|
breq1 |
|- ( f = ( g oF + i ) -> ( f finSupp 0 <-> ( g oF + i ) finSupp 0 ) ) |
164 |
24
|
a1i |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ZZ e. _V ) |
165 |
|
zaddcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) |
166 |
165
|
adantl |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( x + y ) e. ZZ ) |
167 |
28
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> g : Word A --> ZZ ) |
168 |
116
|
adantlr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> i : Word A --> ZZ ) |
169 |
166 167 168 107 107 138
|
off |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( g oF + i ) : Word A --> ZZ ) |
170 |
164 107 169
|
elmapdd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( g oF + i ) e. ( ZZ ^m Word A ) ) |
171 |
|
zringring |
|- ZZring e. Ring |
172 |
|
ringmnd |
|- ( ZZring e. Ring -> ZZring e. Mnd ) |
173 |
171 172
|
ax-mp |
|- ZZring e. Mnd |
174 |
173
|
a1i |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ZZring e. Mnd ) |
175 |
23
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> g e. ( ZZ ^m Word A ) ) |
176 |
112
|
adantl |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> i e. ( ZZ ^m Word A ) ) |
177 |
47
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> g finSupp 0 ) |
178 |
|
zring0 |
|- 0 = ( 0g ` ZZring ) |
179 |
177 178
|
breqtrdi |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> g finSupp ( 0g ` ZZring ) ) |
180 |
111
|
simprbi |
|- ( i e. F -> i finSupp 0 ) |
181 |
180
|
adantl |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> i finSupp 0 ) |
182 |
181 178
|
breqtrdi |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> i finSupp ( 0g ` ZZring ) ) |
183 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
184 |
183
|
mndpfsupp |
|- ( ( ( ZZring e. Mnd /\ Word A e. _V ) /\ ( g e. ( ZZ ^m Word A ) /\ i e. ( ZZ ^m Word A ) ) /\ ( g finSupp ( 0g ` ZZring ) /\ i finSupp ( 0g ` ZZring ) ) ) -> ( g oF ( +g ` ZZring ) i ) finSupp ( 0g ` ZZring ) ) |
185 |
174 107 175 176 179 182 184
|
syl222anc |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( g oF ( +g ` ZZring ) i ) finSupp ( 0g ` ZZring ) ) |
186 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
187 |
186
|
a1i |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> + = ( +g ` ZZring ) ) |
188 |
187
|
ofeqd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> oF + = oF ( +g ` ZZring ) ) |
189 |
188
|
oveqd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( g oF + i ) = ( g oF ( +g ` ZZring ) i ) ) |
190 |
178
|
a1i |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> 0 = ( 0g ` ZZring ) ) |
191 |
185 189 190
|
3brtr4d |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( g oF + i ) finSupp 0 ) |
192 |
163 170 191
|
elrabd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( g oF + i ) e. { f e. ( ZZ ^m Word A ) | f finSupp 0 } ) |
193 |
192 5
|
eleqtrrdi |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( g oF + i ) e. F ) |
194 |
|
eqidd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) ) |
195 |
162 193 194
|
rspcedvdw |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> E. h e. F ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) |
196 |
|
ovexd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) e. _V ) |
197 |
157 195 196
|
elrnmptd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
198 |
197 8
|
eleqtrrdi |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( w e. Word A |-> ( ( ( g oF + i ) ` w ) .x. ( M gsum w ) ) ) ) e. S ) |
199 |
152 198
|
eqeltrd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) e. S ) |
200 |
199
|
adantllr |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) e. S ) |
201 |
200
|
adantllr |
|- ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) e. S ) |
202 |
201
|
ad4ant13 |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) e. S ) |
203 |
104 202
|
eqeltrd |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> ( x ( +g ` R ) y ) e. S ) |
204 |
8
|
eleq2i |
|- ( y e. S <-> y e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
205 |
127
|
oveq2d |
|- ( g = i -> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
206 |
205
|
cbvmptv |
|- ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( i e. F |-> ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
207 |
206
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) ) |
208 |
207
|
elv |
|- ( y e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
209 |
204 208
|
sylbb |
|- ( y e. S -> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
210 |
209
|
adantl |
|- ( ( ( ph /\ x e. S ) /\ y e. S ) -> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
211 |
210
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
212 |
203 211
|
r19.29a |
|- ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( x ( +g ` R ) y ) e. S ) |
213 |
59
|
adantr |
|- ( ( ( ph /\ x e. S ) /\ y e. S ) -> E. g e. F x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
214 |
212 213
|
r19.29a |
|- ( ( ( ph /\ x e. S ) /\ y e. S ) -> ( x ( +g ` R ) y ) e. S ) |
215 |
214
|
ralrimiva |
|- ( ( ph /\ x e. S ) -> A. y e. S ( x ( +g ` R ) y ) e. S ) |
216 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> R e. Grp ) |
217 |
29
|
znegcld |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> -u ( g ` w ) e. ZZ ) |
218 |
1 3 20 217 38
|
mulgcld |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( -u ( g ` w ) .x. ( M gsum w ) ) e. B ) |
219 |
218
|
fmpttd |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) : Word A --> B ) |
220 |
28
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> g : Word A --> ZZ ) |
221 |
|
simpr |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> w e. Word A ) |
222 |
220 221
|
fvco3d |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( ( z e. ZZ |-> -u z ) o. g ) ` w ) = ( ( z e. ZZ |-> -u z ) ` ( g ` w ) ) ) |
223 |
|
eqid |
|- ( z e. ZZ |-> -u z ) = ( z e. ZZ |-> -u z ) |
224 |
|
negeq |
|- ( z = ( g ` w ) -> -u z = -u ( g ` w ) ) |
225 |
223 224 29 217
|
fvmptd3 |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( z e. ZZ |-> -u z ) ` ( g ` w ) ) = -u ( g ` w ) ) |
226 |
222 225
|
eqtrd |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( ( z e. ZZ |-> -u z ) o. g ) ` w ) = -u ( g ` w ) ) |
227 |
226
|
oveq1d |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( ( ( z e. ZZ |-> -u z ) o. g ) ` w ) .x. ( M gsum w ) ) = ( -u ( g ` w ) .x. ( M gsum w ) ) ) |
228 |
227
|
mpteq2dva |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( ( ( ( z e. ZZ |-> -u z ) o. g ) ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) |
229 |
|
simpr |
|- ( ( ph /\ z e. ZZ ) -> z e. ZZ ) |
230 |
229
|
znegcld |
|- ( ( ph /\ z e. ZZ ) -> -u z e. ZZ ) |
231 |
230
|
fmpttd |
|- ( ph -> ( z e. ZZ |-> -u z ) : ZZ --> ZZ ) |
232 |
231
|
adantr |
|- ( ( ph /\ g e. F ) -> ( z e. ZZ |-> -u z ) : ZZ --> ZZ ) |
233 |
232 28
|
fcod |
|- ( ( ph /\ g e. F ) -> ( ( z e. ZZ |-> -u z ) o. g ) : Word A --> ZZ ) |
234 |
24
|
a1i |
|- ( ( ph /\ g e. F ) -> ZZ e. _V ) |
235 |
|
negeq |
|- ( z = 0 -> -u z = -u 0 ) |
236 |
|
neg0 |
|- -u 0 = 0 |
237 |
235 236
|
eqtrdi |
|- ( z = 0 -> -u z = 0 ) |
238 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
239 |
223 237 238 238
|
fvmptd3 |
|- ( ph -> ( ( z e. ZZ |-> -u z ) ` 0 ) = 0 ) |
240 |
239
|
adantr |
|- ( ( ph /\ g e. F ) -> ( ( z e. ZZ |-> -u z ) ` 0 ) = 0 ) |
241 |
42 28 232 19 234 47 240
|
fsuppco2 |
|- ( ( ph /\ g e. F ) -> ( ( z e. ZZ |-> -u z ) o. g ) finSupp 0 ) |
242 |
41 42 19 43 38 233 241 49
|
fisuppov1 |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( ( ( ( z e. ZZ |-> -u z ) o. g ) ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
243 |
228 242
|
eqbrtrrd |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
244 |
1 11 13 19 219 243
|
gsumcl |
|- ( ( ph /\ g e. F ) -> ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) e. B ) |
245 |
244
|
ad4ant13 |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) e. B ) |
246 |
10
|
oveq1d |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( x ( +g ` R ) ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
247 |
|
eqidd |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) |
248 |
|
eqidd |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) |
249 |
1 11 105 13 19 39 218 247 248 50 243
|
gsummptfsadd |
|- ( ( ph /\ g e. F ) -> ( R gsum ( w e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
250 |
249
|
ad4ant13 |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( R gsum ( w e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( +g ` R ) ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
251 |
29
|
zcnd |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( g ` w ) e. CC ) |
252 |
251
|
negidd |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( g ` w ) + -u ( g ` w ) ) = 0 ) |
253 |
252
|
oveq1d |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( ( g ` w ) + -u ( g ` w ) ) .x. ( M gsum w ) ) = ( 0 .x. ( M gsum w ) ) ) |
254 |
1 3 105
|
mulgdir |
|- ( ( R e. Grp /\ ( ( g ` w ) e. ZZ /\ -u ( g ` w ) e. ZZ /\ ( M gsum w ) e. B ) ) -> ( ( ( g ` w ) + -u ( g ` w ) ) .x. ( M gsum w ) ) = ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) |
255 |
20 29 217 38 254
|
syl13anc |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( ( g ` w ) + -u ( g ` w ) ) .x. ( M gsum w ) ) = ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) |
256 |
38 85
|
syl |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( 0 .x. ( M gsum w ) ) = ( 0g ` R ) ) |
257 |
253 255 256
|
3eqtr3d |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( -u ( g ` w ) .x. ( M gsum w ) ) ) = ( 0g ` R ) ) |
258 |
257
|
mpteq2dva |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) = ( w e. Word A |-> ( 0g ` R ) ) ) |
259 |
258
|
oveq2d |
|- ( ( ph /\ g e. F ) -> ( R gsum ( w e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( R gsum ( w e. Word A |-> ( 0g ` R ) ) ) ) |
260 |
92
|
adantr |
|- ( ( ph /\ g e. F ) -> ( R gsum ( w e. Word A |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) |
261 |
259 260
|
eqtrd |
|- ( ( ph /\ g e. F ) -> ( R gsum ( w e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( 0g ` R ) ) |
262 |
261
|
ad4ant13 |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( R gsum ( w e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( +g ` R ) ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( 0g ` R ) ) |
263 |
246 250 262
|
3eqtr2d |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( x ( +g ` R ) ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( 0g ` R ) ) |
264 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
265 |
1 105 11 264
|
grpinvid1 |
|- ( ( R e. Grp /\ x e. B /\ ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) e. B ) -> ( ( ( invg ` R ) ` x ) = ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) <-> ( x ( +g ` R ) ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( 0g ` R ) ) ) |
266 |
265
|
biimpar |
|- ( ( ( R e. Grp /\ x e. B /\ ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) e. B ) /\ ( x ( +g ` R ) ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( 0g ` R ) ) -> ( ( invg ` R ) ` x ) = ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
267 |
216 53 245 263 266
|
syl31anc |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( ( invg ` R ) ` x ) = ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
268 |
|
fveq1 |
|- ( h = ( v e. Word A |-> -u ( g ` v ) ) -> ( h ` w ) = ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) ) |
269 |
268
|
oveq1d |
|- ( h = ( v e. Word A |-> -u ( g ` v ) ) -> ( ( h ` w ) .x. ( M gsum w ) ) = ( ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) .x. ( M gsum w ) ) ) |
270 |
269
|
mpteq2dv |
|- ( h = ( v e. Word A |-> -u ( g ` v ) ) -> ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) .x. ( M gsum w ) ) ) ) |
271 |
270
|
oveq2d |
|- ( h = ( v e. Word A |-> -u ( g ` v ) ) -> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) .x. ( M gsum w ) ) ) ) ) |
272 |
271
|
eqeq2d |
|- ( h = ( v e. Word A |-> -u ( g ` v ) ) -> ( ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) <-> ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) .x. ( M gsum w ) ) ) ) ) ) |
273 |
|
breq1 |
|- ( f = ( v e. Word A |-> -u ( g ` v ) ) -> ( f finSupp 0 <-> ( v e. Word A |-> -u ( g ` v ) ) finSupp 0 ) ) |
274 |
28
|
ffvelcdmda |
|- ( ( ( ph /\ g e. F ) /\ v e. Word A ) -> ( g ` v ) e. ZZ ) |
275 |
274
|
znegcld |
|- ( ( ( ph /\ g e. F ) /\ v e. Word A ) -> -u ( g ` v ) e. ZZ ) |
276 |
275
|
fmpttd |
|- ( ( ph /\ g e. F ) -> ( v e. Word A |-> -u ( g ` v ) ) : Word A --> ZZ ) |
277 |
234 19 276
|
elmapdd |
|- ( ( ph /\ g e. F ) -> ( v e. Word A |-> -u ( g ` v ) ) e. ( ZZ ^m Word A ) ) |
278 |
276
|
ffund |
|- ( ( ph /\ g e. F ) -> Fun ( v e. Word A |-> -u ( g ` v ) ) ) |
279 |
134
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ v e. ( Word A \ ( g supp 0 ) ) ) -> g Fn Word A ) |
280 |
19
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ v e. ( Word A \ ( g supp 0 ) ) ) -> Word A e. _V ) |
281 |
|
0zd |
|- ( ( ( ph /\ g e. F ) /\ v e. ( Word A \ ( g supp 0 ) ) ) -> 0 e. ZZ ) |
282 |
|
simpr |
|- ( ( ( ph /\ g e. F ) /\ v e. ( Word A \ ( g supp 0 ) ) ) -> v e. ( Word A \ ( g supp 0 ) ) ) |
283 |
279 280 281 282
|
fvdifsupp |
|- ( ( ( ph /\ g e. F ) /\ v e. ( Word A \ ( g supp 0 ) ) ) -> ( g ` v ) = 0 ) |
284 |
283
|
negeqd |
|- ( ( ( ph /\ g e. F ) /\ v e. ( Word A \ ( g supp 0 ) ) ) -> -u ( g ` v ) = -u 0 ) |
285 |
284 236
|
eqtrdi |
|- ( ( ( ph /\ g e. F ) /\ v e. ( Word A \ ( g supp 0 ) ) ) -> -u ( g ` v ) = 0 ) |
286 |
285 19
|
suppss2 |
|- ( ( ph /\ g e. F ) -> ( ( v e. Word A |-> -u ( g ` v ) ) supp 0 ) C_ ( g supp 0 ) ) |
287 |
277 42 278 47 286
|
fsuppsssuppgd |
|- ( ( ph /\ g e. F ) -> ( v e. Word A |-> -u ( g ` v ) ) finSupp 0 ) |
288 |
273 277 287
|
elrabd |
|- ( ( ph /\ g e. F ) -> ( v e. Word A |-> -u ( g ` v ) ) e. { f e. ( ZZ ^m Word A ) | f finSupp 0 } ) |
289 |
288 5
|
eleqtrrdi |
|- ( ( ph /\ g e. F ) -> ( v e. Word A |-> -u ( g ` v ) ) e. F ) |
290 |
|
eqid |
|- ( v e. Word A |-> -u ( g ` v ) ) = ( v e. Word A |-> -u ( g ` v ) ) |
291 |
|
fveq2 |
|- ( v = w -> ( g ` v ) = ( g ` w ) ) |
292 |
291
|
negeqd |
|- ( v = w -> -u ( g ` v ) = -u ( g ` w ) ) |
293 |
290 292 221 217
|
fvmptd3 |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) = -u ( g ` w ) ) |
294 |
293
|
eqcomd |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> -u ( g ` w ) = ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) ) |
295 |
294
|
oveq1d |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( -u ( g ` w ) .x. ( M gsum w ) ) = ( ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) .x. ( M gsum w ) ) ) |
296 |
295
|
mpteq2dva |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) .x. ( M gsum w ) ) ) ) |
297 |
296
|
oveq2d |
|- ( ( ph /\ g e. F ) -> ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> -u ( g ` v ) ) ` w ) .x. ( M gsum w ) ) ) ) ) |
298 |
272 289 297
|
rspcedvdw |
|- ( ( ph /\ g e. F ) -> E. h e. F ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) |
299 |
157 298 244
|
elrnmptd |
|- ( ( ph /\ g e. F ) -> ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
300 |
299 8
|
eleqtrrdi |
|- ( ( ph /\ g e. F ) -> ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) e. S ) |
301 |
300
|
ad4ant13 |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( R gsum ( w e. Word A |-> ( -u ( g ` w ) .x. ( M gsum w ) ) ) ) e. S ) |
302 |
267 301
|
eqeltrd |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( ( invg ` R ) ` x ) e. S ) |
303 |
302 59
|
r19.29a |
|- ( ( ph /\ x e. S ) -> ( ( invg ` R ) ` x ) e. S ) |
304 |
215 303
|
jca |
|- ( ( ph /\ x e. S ) -> ( A. y e. S ( x ( +g ` R ) y ) e. S /\ ( ( invg ` R ) ` x ) e. S ) ) |
305 |
304
|
ralrimiva |
|- ( ph -> A. x e. S ( A. y e. S ( x ( +g ` R ) y ) e. S /\ ( ( invg ` R ) ` x ) e. S ) ) |
306 |
1 105 264
|
issubg2 |
|- ( R e. Grp -> ( S e. ( SubGrp ` R ) <-> ( S C_ B /\ S =/= (/) /\ A. x e. S ( A. y e. S ( x ( +g ` R ) y ) e. S /\ ( ( invg ` R ) ` x ) e. S ) ) ) ) |
307 |
306
|
biimpar |
|- ( ( R e. Grp /\ ( S C_ B /\ S =/= (/) /\ A. x e. S ( A. y e. S ( x ( +g ` R ) y ) e. S /\ ( ( invg ` R ) ` x ) e. S ) ) ) -> S e. ( SubGrp ` R ) ) |
308 |
9 64 101 305 307
|
syl13anc |
|- ( ph -> S e. ( SubGrp ` R ) ) |