Step |
Hyp |
Ref |
Expression |
1 |
|
elrgspn.b |
|- B = ( Base ` R ) |
2 |
|
elrgspn.m |
|- M = ( mulGrp ` R ) |
3 |
|
elrgspn.x |
|- .x. = ( .g ` R ) |
4 |
|
elrgspn.n |
|- N = ( RingSpan ` R ) |
5 |
|
elrgspn.f |
|- F = { f e. ( ZZ ^m Word A ) | f finSupp 0 } |
6 |
|
elrgspn.r |
|- ( ph -> R e. Ring ) |
7 |
|
elrgspn.a |
|- ( ph -> A C_ B ) |
8 |
|
elrgspnlem1.1 |
|- S = ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
9 |
1 2 3 4 5 6 7 8
|
elrgspnlem1 |
|- ( ph -> S e. ( SubGrp ` R ) ) |
10 |
|
eqeq2 |
|- ( ( 1r ` R ) = if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) -> ( ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) = ( 1r ` R ) <-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) = if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
11 |
|
eqeq2 |
|- ( ( 0g ` R ) = if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) -> ( ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) = ( 0g ` R ) <-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) = if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
12 |
|
simpr |
|- ( ( ( ph /\ w e. Word A ) /\ w = (/) ) -> w = (/) ) |
13 |
12
|
fveq2d |
|- ( ( ( ph /\ w e. Word A ) /\ w = (/) ) -> ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) = ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` (/) ) ) |
14 |
|
eqid |
|- ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) = ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) |
15 |
|
simpr |
|- ( ( ph /\ v = (/) ) -> v = (/) ) |
16 |
15
|
iftrued |
|- ( ( ph /\ v = (/) ) -> if ( v = (/) , 1 , 0 ) = 1 ) |
17 |
|
wrd0 |
|- (/) e. Word A |
18 |
17
|
a1i |
|- ( ph -> (/) e. Word A ) |
19 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
20 |
14 16 18 19
|
fvmptd2 |
|- ( ph -> ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` (/) ) = 1 ) |
21 |
20
|
ad2antrr |
|- ( ( ( ph /\ w e. Word A ) /\ w = (/) ) -> ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` (/) ) = 1 ) |
22 |
13 21
|
eqtrd |
|- ( ( ( ph /\ w e. Word A ) /\ w = (/) ) -> ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) = 1 ) |
23 |
12
|
oveq2d |
|- ( ( ( ph /\ w e. Word A ) /\ w = (/) ) -> ( M gsum w ) = ( M gsum (/) ) ) |
24 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
25 |
2 24
|
ringidval |
|- ( 1r ` R ) = ( 0g ` M ) |
26 |
25
|
gsum0 |
|- ( M gsum (/) ) = ( 1r ` R ) |
27 |
23 26
|
eqtrdi |
|- ( ( ( ph /\ w e. Word A ) /\ w = (/) ) -> ( M gsum w ) = ( 1r ` R ) ) |
28 |
22 27
|
oveq12d |
|- ( ( ( ph /\ w e. Word A ) /\ w = (/) ) -> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) = ( 1 .x. ( 1r ` R ) ) ) |
29 |
1 24
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
30 |
6 29
|
syl |
|- ( ph -> ( 1r ` R ) e. B ) |
31 |
1 3
|
mulg1 |
|- ( ( 1r ` R ) e. B -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
32 |
30 31
|
syl |
|- ( ph -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
33 |
32
|
ad2antrr |
|- ( ( ( ph /\ w e. Word A ) /\ w = (/) ) -> ( 1 .x. ( 1r ` R ) ) = ( 1r ` R ) ) |
34 |
28 33
|
eqtrd |
|- ( ( ( ph /\ w e. Word A ) /\ w = (/) ) -> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) = ( 1r ` R ) ) |
35 |
|
eqeq1 |
|- ( v = w -> ( v = (/) <-> w = (/) ) ) |
36 |
35
|
notbid |
|- ( v = w -> ( -. v = (/) <-> -. w = (/) ) ) |
37 |
36
|
biimparc |
|- ( ( -. w = (/) /\ v = w ) -> -. v = (/) ) |
38 |
37
|
adantll |
|- ( ( ( ( ph /\ w e. Word A ) /\ -. w = (/) ) /\ v = w ) -> -. v = (/) ) |
39 |
38
|
iffalsed |
|- ( ( ( ( ph /\ w e. Word A ) /\ -. w = (/) ) /\ v = w ) -> if ( v = (/) , 1 , 0 ) = 0 ) |
40 |
|
simplr |
|- ( ( ( ph /\ w e. Word A ) /\ -. w = (/) ) -> w e. Word A ) |
41 |
|
0zd |
|- ( ( ( ph /\ w e. Word A ) /\ -. w = (/) ) -> 0 e. ZZ ) |
42 |
14 39 40 41
|
fvmptd2 |
|- ( ( ( ph /\ w e. Word A ) /\ -. w = (/) ) -> ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) = 0 ) |
43 |
42
|
oveq1d |
|- ( ( ( ph /\ w e. Word A ) /\ -. w = (/) ) -> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) = ( 0 .x. ( M gsum w ) ) ) |
44 |
2
|
ringmgp |
|- ( R e. Ring -> M e. Mnd ) |
45 |
6 44
|
syl |
|- ( ph -> M e. Mnd ) |
46 |
|
sswrd |
|- ( A C_ B -> Word A C_ Word B ) |
47 |
7 46
|
syl |
|- ( ph -> Word A C_ Word B ) |
48 |
47
|
sselda |
|- ( ( ph /\ w e. Word A ) -> w e. Word B ) |
49 |
2 1
|
mgpbas |
|- B = ( Base ` M ) |
50 |
49
|
gsumwcl |
|- ( ( M e. Mnd /\ w e. Word B ) -> ( M gsum w ) e. B ) |
51 |
45 48 50
|
syl2an2r |
|- ( ( ph /\ w e. Word A ) -> ( M gsum w ) e. B ) |
52 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
53 |
1 52 3
|
mulg0 |
|- ( ( M gsum w ) e. B -> ( 0 .x. ( M gsum w ) ) = ( 0g ` R ) ) |
54 |
51 53
|
syl |
|- ( ( ph /\ w e. Word A ) -> ( 0 .x. ( M gsum w ) ) = ( 0g ` R ) ) |
55 |
54
|
adantr |
|- ( ( ( ph /\ w e. Word A ) /\ -. w = (/) ) -> ( 0 .x. ( M gsum w ) ) = ( 0g ` R ) ) |
56 |
43 55
|
eqtrd |
|- ( ( ( ph /\ w e. Word A ) /\ -. w = (/) ) -> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) = ( 0g ` R ) ) |
57 |
10 11 34 56
|
ifbothda |
|- ( ( ph /\ w e. Word A ) -> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) = if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) ) |
58 |
57
|
mpteq2dva |
|- ( ph -> ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
59 |
58
|
oveq2d |
|- ( ph -> ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
60 |
6
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
61 |
60
|
cmnmndd |
|- ( ph -> R e. Mnd ) |
62 |
1
|
fvexi |
|- B e. _V |
63 |
62
|
a1i |
|- ( ph -> B e. _V ) |
64 |
63 7
|
ssexd |
|- ( ph -> A e. _V ) |
65 |
|
wrdexg |
|- ( A e. _V -> Word A e. _V ) |
66 |
64 65
|
syl |
|- ( ph -> Word A e. _V ) |
67 |
|
eqid |
|- ( w e. Word A |-> if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) ) = ( w e. Word A |-> if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) ) |
68 |
30 1
|
eleqtrdi |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
69 |
52 61 66 18 67 68
|
gsummptif1n0 |
|- ( ph -> ( R gsum ( w e. Word A |-> if ( w = (/) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( 1r ` R ) ) |
70 |
59 69
|
eqtrd |
|- ( ph -> ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) = ( 1r ` R ) ) |
71 |
|
eqid |
|- ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
72 |
|
fveq1 |
|- ( g = ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) -> ( g ` w ) = ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) ) |
73 |
72
|
oveq1d |
|- ( g = ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) -> ( ( g ` w ) .x. ( M gsum w ) ) = ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) |
74 |
73
|
mpteq2dv |
|- ( g = ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) |
75 |
74
|
oveq2d |
|- ( g = ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) -> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) ) |
76 |
75
|
eqeq2d |
|- ( g = ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) -> ( ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) <-> ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) ) ) |
77 |
|
breq1 |
|- ( f = ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) -> ( f finSupp 0 <-> ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) finSupp 0 ) ) |
78 |
|
zex |
|- ZZ e. _V |
79 |
78
|
a1i |
|- ( ph -> ZZ e. _V ) |
80 |
|
1zzd |
|- ( ( ( ph /\ v e. Word A ) /\ v = (/) ) -> 1 e. ZZ ) |
81 |
|
0zd |
|- ( ( ( ph /\ v e. Word A ) /\ -. v = (/) ) -> 0 e. ZZ ) |
82 |
80 81
|
ifclda |
|- ( ( ph /\ v e. Word A ) -> if ( v = (/) , 1 , 0 ) e. ZZ ) |
83 |
82
|
fmpttd |
|- ( ph -> ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) : Word A --> ZZ ) |
84 |
79 66 83
|
elmapdd |
|- ( ph -> ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) e. ( ZZ ^m Word A ) ) |
85 |
66
|
mptexd |
|- ( ph -> ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) e. _V ) |
86 |
83
|
ffund |
|- ( ph -> Fun ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ) |
87 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
88 |
|
snfi |
|- { (/) } e. Fin |
89 |
88
|
a1i |
|- ( ph -> { (/) } e. Fin ) |
90 |
|
eldifsni |
|- ( v e. ( Word A \ { (/) } ) -> v =/= (/) ) |
91 |
90
|
adantl |
|- ( ( ph /\ v e. ( Word A \ { (/) } ) ) -> v =/= (/) ) |
92 |
91
|
neneqd |
|- ( ( ph /\ v e. ( Word A \ { (/) } ) ) -> -. v = (/) ) |
93 |
92
|
iffalsed |
|- ( ( ph /\ v e. ( Word A \ { (/) } ) ) -> if ( v = (/) , 1 , 0 ) = 0 ) |
94 |
93 66
|
suppss2 |
|- ( ph -> ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) supp 0 ) C_ { (/) } ) |
95 |
|
suppssfifsupp |
|- ( ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) e. _V /\ Fun ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) /\ 0 e. ZZ ) /\ ( { (/) } e. Fin /\ ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) supp 0 ) C_ { (/) } ) ) -> ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) finSupp 0 ) |
96 |
85 86 87 89 94 95
|
syl32anc |
|- ( ph -> ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) finSupp 0 ) |
97 |
77 84 96
|
elrabd |
|- ( ph -> ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) e. { f e. ( ZZ ^m Word A ) | f finSupp 0 } ) |
98 |
97 5
|
eleqtrrdi |
|- ( ph -> ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) e. F ) |
99 |
|
eqidd |
|- ( ph -> ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) ) |
100 |
76 98 99
|
rspcedvdw |
|- ( ph -> E. g e. F ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
101 |
|
ovexd |
|- ( ph -> ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) e. _V ) |
102 |
71 100 101
|
elrnmptd |
|- ( ph -> ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
103 |
102 8
|
eleqtrrdi |
|- ( ph -> ( R gsum ( w e. Word A |-> ( ( ( v e. Word A |-> if ( v = (/) , 1 , 0 ) ) ` w ) .x. ( M gsum w ) ) ) ) e. S ) |
104 |
70 103
|
eqeltrrd |
|- ( ph -> ( 1r ` R ) e. S ) |
105 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
106 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
107 |
105 106
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> ( x ( .r ` R ) y ) = ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( .r ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) ) |
108 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
109 |
66
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> Word A e. _V ) |
110 |
6
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> R e. Ring ) |
111 |
6
|
ringgrpd |
|- ( ph -> R e. Grp ) |
112 |
111
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> R e. Grp ) |
113 |
5
|
ssrab3 |
|- F C_ ( ZZ ^m Word A ) |
114 |
113
|
a1i |
|- ( ph -> F C_ ( ZZ ^m Word A ) ) |
115 |
114
|
sselda |
|- ( ( ph /\ g e. F ) -> g e. ( ZZ ^m Word A ) ) |
116 |
79 66
|
elmapd |
|- ( ph -> ( g e. ( ZZ ^m Word A ) <-> g : Word A --> ZZ ) ) |
117 |
116
|
adantr |
|- ( ( ph /\ g e. F ) -> ( g e. ( ZZ ^m Word A ) <-> g : Word A --> ZZ ) ) |
118 |
115 117
|
mpbid |
|- ( ( ph /\ g e. F ) -> g : Word A --> ZZ ) |
119 |
118
|
ffvelcdmda |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( g ` w ) e. ZZ ) |
120 |
51
|
adantlr |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( M gsum w ) e. B ) |
121 |
1 3 112 119 120
|
mulgcld |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> ( ( g ` w ) .x. ( M gsum w ) ) e. B ) |
122 |
121
|
adantlr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( ( g ` w ) .x. ( M gsum w ) ) e. B ) |
123 |
122
|
ralrimiva |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> A. w e. Word A ( ( g ` w ) .x. ( M gsum w ) ) e. B ) |
124 |
|
fveq2 |
|- ( u = w -> ( g ` u ) = ( g ` w ) ) |
125 |
|
oveq2 |
|- ( u = w -> ( M gsum u ) = ( M gsum w ) ) |
126 |
124 125
|
oveq12d |
|- ( u = w -> ( ( g ` u ) .x. ( M gsum u ) ) = ( ( g ` w ) .x. ( M gsum w ) ) ) |
127 |
126
|
eleq1d |
|- ( u = w -> ( ( ( g ` u ) .x. ( M gsum u ) ) e. B <-> ( ( g ` w ) .x. ( M gsum w ) ) e. B ) ) |
128 |
127
|
cbvralvw |
|- ( A. u e. Word A ( ( g ` u ) .x. ( M gsum u ) ) e. B <-> A. w e. Word A ( ( g ` w ) .x. ( M gsum w ) ) e. B ) |
129 |
123 128
|
sylibr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> A. u e. Word A ( ( g ` u ) .x. ( M gsum u ) ) e. B ) |
130 |
129
|
r19.21bi |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ u e. Word A ) -> ( ( g ` u ) .x. ( M gsum u ) ) e. B ) |
131 |
111
|
ad2antrr |
|- ( ( ( ph /\ i e. F ) /\ w e. Word A ) -> R e. Grp ) |
132 |
|
breq1 |
|- ( f = i -> ( f finSupp 0 <-> i finSupp 0 ) ) |
133 |
132 5
|
elrab2 |
|- ( i e. F <-> ( i e. ( ZZ ^m Word A ) /\ i finSupp 0 ) ) |
134 |
133
|
simplbi |
|- ( i e. F -> i e. ( ZZ ^m Word A ) ) |
135 |
134
|
adantl |
|- ( ( ph /\ i e. F ) -> i e. ( ZZ ^m Word A ) ) |
136 |
79 66
|
elmapd |
|- ( ph -> ( i e. ( ZZ ^m Word A ) <-> i : Word A --> ZZ ) ) |
137 |
136
|
adantr |
|- ( ( ph /\ i e. F ) -> ( i e. ( ZZ ^m Word A ) <-> i : Word A --> ZZ ) ) |
138 |
135 137
|
mpbid |
|- ( ( ph /\ i e. F ) -> i : Word A --> ZZ ) |
139 |
138
|
ffvelcdmda |
|- ( ( ( ph /\ i e. F ) /\ w e. Word A ) -> ( i ` w ) e. ZZ ) |
140 |
51
|
adantlr |
|- ( ( ( ph /\ i e. F ) /\ w e. Word A ) -> ( M gsum w ) e. B ) |
141 |
1 3 131 139 140
|
mulgcld |
|- ( ( ( ph /\ i e. F ) /\ w e. Word A ) -> ( ( i ` w ) .x. ( M gsum w ) ) e. B ) |
142 |
141
|
adantllr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> ( ( i ` w ) .x. ( M gsum w ) ) e. B ) |
143 |
142
|
ralrimiva |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> A. w e. Word A ( ( i ` w ) .x. ( M gsum w ) ) e. B ) |
144 |
|
fveq2 |
|- ( v = w -> ( i ` v ) = ( i ` w ) ) |
145 |
|
oveq2 |
|- ( v = w -> ( M gsum v ) = ( M gsum w ) ) |
146 |
144 145
|
oveq12d |
|- ( v = w -> ( ( i ` v ) .x. ( M gsum v ) ) = ( ( i ` w ) .x. ( M gsum w ) ) ) |
147 |
146
|
eleq1d |
|- ( v = w -> ( ( ( i ` v ) .x. ( M gsum v ) ) e. B <-> ( ( i ` w ) .x. ( M gsum w ) ) e. B ) ) |
148 |
147
|
cbvralvw |
|- ( A. v e. Word A ( ( i ` v ) .x. ( M gsum v ) ) e. B <-> A. w e. Word A ( ( i ` w ) .x. ( M gsum w ) ) e. B ) |
149 |
143 148
|
sylibr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> A. v e. Word A ( ( i ` v ) .x. ( M gsum v ) ) e. B ) |
150 |
149
|
r19.21bi |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( ( i ` v ) .x. ( M gsum v ) ) e. B ) |
151 |
126
|
cbvmptv |
|- ( u e. Word A |-> ( ( g ` u ) .x. ( M gsum u ) ) ) = ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) |
152 |
|
fvexd |
|- ( ( ph /\ g e. F ) -> ( 0g ` R ) e. _V ) |
153 |
|
0zd |
|- ( ( ph /\ g e. F ) -> 0 e. ZZ ) |
154 |
66
|
adantr |
|- ( ( ph /\ g e. F ) -> Word A e. _V ) |
155 |
|
ssidd |
|- ( ( ph /\ g e. F ) -> Word A C_ Word A ) |
156 |
|
breq1 |
|- ( f = g -> ( f finSupp 0 <-> g finSupp 0 ) ) |
157 |
156 5
|
elrab2 |
|- ( g e. F <-> ( g e. ( ZZ ^m Word A ) /\ g finSupp 0 ) ) |
158 |
157
|
simprbi |
|- ( g e. F -> g finSupp 0 ) |
159 |
158
|
adantl |
|- ( ( ph /\ g e. F ) -> g finSupp 0 ) |
160 |
1 52 3
|
mulg0 |
|- ( y e. B -> ( 0 .x. y ) = ( 0g ` R ) ) |
161 |
160
|
adantl |
|- ( ( ( ph /\ g e. F ) /\ y e. B ) -> ( 0 .x. y ) = ( 0g ` R ) ) |
162 |
152 153 154 155 120 118 159 161
|
fisuppov1 |
|- ( ( ph /\ g e. F ) -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
163 |
162
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
164 |
151 163
|
eqbrtrid |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( u e. Word A |-> ( ( g ` u ) .x. ( M gsum u ) ) ) finSupp ( 0g ` R ) ) |
165 |
146
|
cbvmptv |
|- ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) = ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) |
166 |
162
|
ralrimiva |
|- ( ph -> A. g e. F ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
167 |
|
fveq1 |
|- ( g = i -> ( g ` w ) = ( i ` w ) ) |
168 |
167
|
oveq1d |
|- ( g = i -> ( ( g ` w ) .x. ( M gsum w ) ) = ( ( i ` w ) .x. ( M gsum w ) ) ) |
169 |
168
|
mpteq2dv |
|- ( g = i -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) |
170 |
169
|
breq1d |
|- ( g = i -> ( ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) <-> ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) ) |
171 |
170
|
cbvralvw |
|- ( A. g e. F ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) <-> A. i e. F ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
172 |
166 171
|
sylib |
|- ( ph -> A. i e. F ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
173 |
172
|
r19.21bi |
|- ( ( ph /\ i e. F ) -> ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
174 |
173
|
adantlr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) finSupp ( 0g ` R ) ) |
175 |
165 174
|
eqbrtrid |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) finSupp ( 0g ` R ) ) |
176 |
1 108 52 109 109 110 130 150 164 175
|
gsumdixp |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( u e. Word A |-> ( ( g ` u ) .x. ( M gsum u ) ) ) ) ( .r ` R ) ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) = ( R gsum ( u e. Word A , v e. Word A |-> ( ( ( g ` u ) .x. ( M gsum u ) ) ( .r ` R ) ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) ) |
177 |
151
|
oveq2i |
|- ( R gsum ( u e. Word A |-> ( ( g ` u ) .x. ( M gsum u ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) |
178 |
165
|
oveq2i |
|- ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) |
179 |
177 178
|
oveq12i |
|- ( ( R gsum ( u e. Word A |-> ( ( g ` u ) .x. ( M gsum u ) ) ) ) ( .r ` R ) ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) = ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( .r ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
180 |
179
|
a1i |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( u e. Word A |-> ( ( g ` u ) .x. ( M gsum u ) ) ) ) ( .r ` R ) ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) = ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( .r ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) ) |
181 |
110
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> R e. Ring ) |
182 |
122
|
adantr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( g ` w ) .x. ( M gsum w ) ) e. B ) |
183 |
111
|
ad4antr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> R e. Grp ) |
184 |
138
|
adantlr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> i : Word A --> ZZ ) |
185 |
184
|
ffvelcdmda |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ f e. Word A ) -> ( i ` f ) e. ZZ ) |
186 |
185
|
adantlr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( i ` f ) e. ZZ ) |
187 |
45
|
ad4antr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> M e. Mnd ) |
188 |
47
|
adantr |
|- ( ( ph /\ g e. F ) -> Word A C_ Word B ) |
189 |
188
|
ad2antrr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) -> Word A C_ Word B ) |
190 |
189
|
sselda |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> f e. Word B ) |
191 |
49
|
gsumwcl |
|- ( ( M e. Mnd /\ f e. Word B ) -> ( M gsum f ) e. B ) |
192 |
187 190 191
|
syl2anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( M gsum f ) e. B ) |
193 |
1 3 183 186 192
|
mulgcld |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( i ` f ) .x. ( M gsum f ) ) e. B ) |
194 |
1 108 181 182 193
|
ringcld |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) e. B ) |
195 |
194
|
anasss |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ ( w e. Word A /\ f e. Word A ) ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) e. B ) |
196 |
195
|
ralrimivva |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> A. w e. Word A A. f e. Word A ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) e. B ) |
197 |
|
eqid |
|- ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) = ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) |
198 |
197
|
fmpo |
|- ( A. w e. Word A A. f e. Word A ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) e. B <-> ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) : ( Word A X. Word A ) --> B ) |
199 |
196 198
|
sylib |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) : ( Word A X. Word A ) --> B ) |
200 |
|
vex |
|- w e. _V |
201 |
|
vex |
|- f e. _V |
202 |
200 201
|
op1std |
|- ( a = <. w , f >. -> ( 1st ` a ) = w ) |
203 |
202
|
fveq2d |
|- ( a = <. w , f >. -> ( g ` ( 1st ` a ) ) = ( g ` w ) ) |
204 |
202
|
oveq2d |
|- ( a = <. w , f >. -> ( M gsum ( 1st ` a ) ) = ( M gsum w ) ) |
205 |
203 204
|
oveq12d |
|- ( a = <. w , f >. -> ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) = ( ( g ` w ) .x. ( M gsum w ) ) ) |
206 |
200 201
|
op2ndd |
|- ( a = <. w , f >. -> ( 2nd ` a ) = f ) |
207 |
206
|
fveq2d |
|- ( a = <. w , f >. -> ( i ` ( 2nd ` a ) ) = ( i ` f ) ) |
208 |
206
|
oveq2d |
|- ( a = <. w , f >. -> ( M gsum ( 2nd ` a ) ) = ( M gsum f ) ) |
209 |
207 208
|
oveq12d |
|- ( a = <. w , f >. -> ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) = ( ( i ` f ) .x. ( M gsum f ) ) ) |
210 |
205 209
|
oveq12d |
|- ( a = <. w , f >. -> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) = ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) |
211 |
210
|
mpompt |
|- ( a e. ( Word A X. Word A ) |-> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) ) = ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) |
212 |
66 66
|
xpexd |
|- ( ph -> ( Word A X. Word A ) e. _V ) |
213 |
212
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( Word A X. Word A ) e. _V ) |
214 |
213
|
mptexd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( a e. ( Word A X. Word A ) |-> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) ) e. _V ) |
215 |
|
fvexd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( 0g ` R ) e. _V ) |
216 |
110
|
adantr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> R e. Ring ) |
217 |
111
|
ad3antrrr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> R e. Grp ) |
218 |
118
|
ad2antrr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> g : Word A --> ZZ ) |
219 |
|
xp1st |
|- ( a e. ( Word A X. Word A ) -> ( 1st ` a ) e. Word A ) |
220 |
219
|
adantl |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( 1st ` a ) e. Word A ) |
221 |
218 220
|
ffvelcdmd |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( g ` ( 1st ` a ) ) e. ZZ ) |
222 |
216 44
|
syl |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> M e. Mnd ) |
223 |
188
|
ad2antrr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> Word A C_ Word B ) |
224 |
223 220
|
sseldd |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( 1st ` a ) e. Word B ) |
225 |
49
|
gsumwcl |
|- ( ( M e. Mnd /\ ( 1st ` a ) e. Word B ) -> ( M gsum ( 1st ` a ) ) e. B ) |
226 |
222 224 225
|
syl2anc |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( M gsum ( 1st ` a ) ) e. B ) |
227 |
1 3 217 221 226
|
mulgcld |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) e. B ) |
228 |
184
|
adantr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> i : Word A --> ZZ ) |
229 |
|
xp2nd |
|- ( a e. ( Word A X. Word A ) -> ( 2nd ` a ) e. Word A ) |
230 |
229
|
adantl |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( 2nd ` a ) e. Word A ) |
231 |
228 230
|
ffvelcdmd |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( i ` ( 2nd ` a ) ) e. ZZ ) |
232 |
223 230
|
sseldd |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( 2nd ` a ) e. Word B ) |
233 |
49
|
gsumwcl |
|- ( ( M e. Mnd /\ ( 2nd ` a ) e. Word B ) -> ( M gsum ( 2nd ` a ) ) e. B ) |
234 |
222 232 233
|
syl2anc |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( M gsum ( 2nd ` a ) ) e. B ) |
235 |
1 3 217 231 234
|
mulgcld |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) e. B ) |
236 |
1 108 216 227 235
|
ringcld |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( Word A X. Word A ) ) -> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) e. B ) |
237 |
236
|
fmpttd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( a e. ( Word A X. Word A ) |-> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) ) : ( Word A X. Word A ) --> B ) |
238 |
237
|
ffund |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> Fun ( a e. ( Word A X. Word A ) |-> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) ) ) |
239 |
159
|
fsuppimpd |
|- ( ( ph /\ g e. F ) -> ( g supp 0 ) e. Fin ) |
240 |
133
|
simprbi |
|- ( i e. F -> i finSupp 0 ) |
241 |
240
|
adantl |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> i finSupp 0 ) |
242 |
241
|
fsuppimpd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( i supp 0 ) e. Fin ) |
243 |
|
xpfi |
|- ( ( ( g supp 0 ) e. Fin /\ ( i supp 0 ) e. Fin ) -> ( ( g supp 0 ) X. ( i supp 0 ) ) e. Fin ) |
244 |
239 242 243
|
syl2an2r |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( g supp 0 ) X. ( i supp 0 ) ) e. Fin ) |
245 |
118
|
ffnd |
|- ( ( ph /\ g e. F ) -> g Fn Word A ) |
246 |
245
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> g Fn Word A ) |
247 |
246
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> g Fn Word A ) |
248 |
109
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> Word A e. _V ) |
249 |
|
0zd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> 0 e. ZZ ) |
250 |
|
xp1st |
|- ( a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) -> ( 1st ` a ) e. ( Word A \ ( g supp 0 ) ) ) |
251 |
250
|
adantl |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( 1st ` a ) e. ( Word A \ ( g supp 0 ) ) ) |
252 |
247 248 249 251
|
fvdifsupp |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( g ` ( 1st ` a ) ) = 0 ) |
253 |
252
|
oveq1d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) = ( 0 .x. ( M gsum ( 1st ` a ) ) ) ) |
254 |
45
|
ad4antr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> M e. Mnd ) |
255 |
188
|
ad3antrrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> Word A C_ Word B ) |
256 |
251
|
eldifad |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( 1st ` a ) e. Word A ) |
257 |
255 256
|
sseldd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( 1st ` a ) e. Word B ) |
258 |
254 257 225
|
syl2anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( M gsum ( 1st ` a ) ) e. B ) |
259 |
1 52 3
|
mulg0 |
|- ( ( M gsum ( 1st ` a ) ) e. B -> ( 0 .x. ( M gsum ( 1st ` a ) ) ) = ( 0g ` R ) ) |
260 |
258 259
|
syl |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( 0 .x. ( M gsum ( 1st ` a ) ) ) = ( 0g ` R ) ) |
261 |
253 260
|
eqtrd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) = ( 0g ` R ) ) |
262 |
261
|
oveq1d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) = ( ( 0g ` R ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) ) |
263 |
110
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> R e. Ring ) |
264 |
111
|
ad4antr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> R e. Grp ) |
265 |
184
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> i : Word A --> ZZ ) |
266 |
|
xp2nd |
|- ( a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) -> ( 2nd ` a ) e. Word A ) |
267 |
266
|
adantl |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( 2nd ` a ) e. Word A ) |
268 |
265 267
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( i ` ( 2nd ` a ) ) e. ZZ ) |
269 |
255 267
|
sseldd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( 2nd ` a ) e. Word B ) |
270 |
254 269 233
|
syl2anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( M gsum ( 2nd ` a ) ) e. B ) |
271 |
1 3 264 268 270
|
mulgcld |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) e. B ) |
272 |
1 108 52 263 271
|
ringlzd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( ( 0g ` R ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) |
273 |
262 272
|
eqtrd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) ) -> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) |
274 |
138
|
ffnd |
|- ( ( ph /\ i e. F ) -> i Fn Word A ) |
275 |
274
|
adantlr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> i Fn Word A ) |
276 |
275
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> i Fn Word A ) |
277 |
109
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> Word A e. _V ) |
278 |
|
0zd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> 0 e. ZZ ) |
279 |
|
xp2nd |
|- ( a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) -> ( 2nd ` a ) e. ( Word A \ ( i supp 0 ) ) ) |
280 |
279
|
adantl |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( 2nd ` a ) e. ( Word A \ ( i supp 0 ) ) ) |
281 |
276 277 278 280
|
fvdifsupp |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( i ` ( 2nd ` a ) ) = 0 ) |
282 |
281
|
oveq1d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) = ( 0 .x. ( M gsum ( 2nd ` a ) ) ) ) |
283 |
45
|
ad4antr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> M e. Mnd ) |
284 |
188
|
ad3antrrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> Word A C_ Word B ) |
285 |
280
|
eldifad |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( 2nd ` a ) e. Word A ) |
286 |
284 285
|
sseldd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( 2nd ` a ) e. Word B ) |
287 |
283 286 233
|
syl2anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( M gsum ( 2nd ` a ) ) e. B ) |
288 |
1 52 3
|
mulg0 |
|- ( ( M gsum ( 2nd ` a ) ) e. B -> ( 0 .x. ( M gsum ( 2nd ` a ) ) ) = ( 0g ` R ) ) |
289 |
287 288
|
syl |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( 0 .x. ( M gsum ( 2nd ` a ) ) ) = ( 0g ` R ) ) |
290 |
282 289
|
eqtrd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) = ( 0g ` R ) ) |
291 |
290
|
oveq2d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) = ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( 0g ` R ) ) ) |
292 |
110
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> R e. Ring ) |
293 |
111
|
ad4antr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> R e. Grp ) |
294 |
118
|
adantr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> g : Word A --> ZZ ) |
295 |
294
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> g : Word A --> ZZ ) |
296 |
|
xp1st |
|- ( a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) -> ( 1st ` a ) e. Word A ) |
297 |
296
|
adantl |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( 1st ` a ) e. Word A ) |
298 |
295 297
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( g ` ( 1st ` a ) ) e. ZZ ) |
299 |
284 297
|
sseldd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( 1st ` a ) e. Word B ) |
300 |
283 299 225
|
syl2anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( M gsum ( 1st ` a ) ) e. B ) |
301 |
1 3 293 298 300
|
mulgcld |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) e. B ) |
302 |
1 108 52 292 301
|
ringrzd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
303 |
291 302
|
eqtrd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) /\ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) -> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) |
304 |
|
simpr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) -> a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) |
305 |
|
difxp |
|- ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) = ( ( ( Word A \ ( g supp 0 ) ) X. Word A ) u. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) |
306 |
304 305
|
eleqtrdi |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) -> a e. ( ( ( Word A \ ( g supp 0 ) ) X. Word A ) u. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) ) |
307 |
|
elun |
|- ( a e. ( ( ( Word A \ ( g supp 0 ) ) X. Word A ) u. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) <-> ( a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) \/ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) ) |
308 |
306 307
|
sylib |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) -> ( a e. ( ( Word A \ ( g supp 0 ) ) X. Word A ) \/ a e. ( Word A X. ( Word A \ ( i supp 0 ) ) ) ) ) |
309 |
273 303 308
|
mpjaodan |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ a e. ( ( Word A X. Word A ) \ ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) -> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) = ( 0g ` R ) ) |
310 |
309 213
|
suppss2 |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( a e. ( Word A X. Word A ) |-> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) ) supp ( 0g ` R ) ) C_ ( ( g supp 0 ) X. ( i supp 0 ) ) ) |
311 |
244 310
|
ssfid |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( a e. ( Word A X. Word A ) |-> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) ) supp ( 0g ` R ) ) e. Fin ) |
312 |
214 215 238 311
|
isfsuppd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( a e. ( Word A X. Word A ) |-> ( ( ( g ` ( 1st ` a ) ) .x. ( M gsum ( 1st ` a ) ) ) ( .r ` R ) ( ( i ` ( 2nd ` a ) ) .x. ( M gsum ( 2nd ` a ) ) ) ) ) finSupp ( 0g ` R ) ) |
313 |
211 312
|
eqbrtrrid |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) finSupp ( 0g ` R ) ) |
314 |
60
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> R e. CMnd ) |
315 |
7
|
ad2antrr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> A C_ B ) |
316 |
1 52 199 313 314 315
|
gsumwrd2dccat |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ) = ( R gsum ( v e. Word A |-> ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ` <. ( v prefix j ) , ( v substr <. j , ( # ` v ) >. ) >. ) ) ) ) ) ) |
317 |
126
|
oveq1d |
|- ( u = w -> ( ( ( g ` u ) .x. ( M gsum u ) ) ( .r ` R ) ( ( i ` v ) .x. ( M gsum v ) ) ) = ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` v ) .x. ( M gsum v ) ) ) ) |
318 |
|
fveq2 |
|- ( v = f -> ( i ` v ) = ( i ` f ) ) |
319 |
|
oveq2 |
|- ( v = f -> ( M gsum v ) = ( M gsum f ) ) |
320 |
318 319
|
oveq12d |
|- ( v = f -> ( ( i ` v ) .x. ( M gsum v ) ) = ( ( i ` f ) .x. ( M gsum f ) ) ) |
321 |
320
|
oveq2d |
|- ( v = f -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` v ) .x. ( M gsum v ) ) ) = ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) |
322 |
317 321
|
cbvmpov |
|- ( u e. Word A , v e. Word A |-> ( ( ( g ` u ) .x. ( M gsum u ) ) ( .r ` R ) ( ( i ` v ) .x. ( M gsum v ) ) ) ) = ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) |
323 |
322
|
oveq2i |
|- ( R gsum ( u e. Word A , v e. Word A |-> ( ( ( g ` u ) .x. ( M gsum u ) ) ( .r ` R ) ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) = ( R gsum ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ) |
324 |
323
|
a1i |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( u e. Word A , v e. Word A |-> ( ( ( g ` u ) .x. ( M gsum u ) ) ( .r ` R ) ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) = ( R gsum ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ) ) |
325 |
|
pfxcctswrd |
|- ( ( v e. Word A /\ j e. ( 0 ... ( # ` v ) ) ) -> ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) = v ) |
326 |
325
|
adantll |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) = v ) |
327 |
326
|
oveq2d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) = ( M gsum v ) ) |
328 |
327
|
oveq2d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) = ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum v ) ) ) |
329 |
328
|
mpteq2dva |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( j e. ( 0 ... ( # ` v ) ) |-> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) ) = ( j e. ( 0 ... ( # ` v ) ) |-> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum v ) ) ) ) |
330 |
329
|
oveq2d |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) ) ) = ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum v ) ) ) ) ) |
331 |
|
df-ov |
|- ( ( v prefix j ) ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ( v substr <. j , ( # ` v ) >. ) ) = ( ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ` <. ( v prefix j ) , ( v substr <. j , ( # ` v ) >. ) >. ) |
332 |
188
|
sselda |
|- ( ( ( ph /\ g e. F ) /\ w e. Word A ) -> w e. Word B ) |
333 |
332
|
ad4ant13 |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> w e. Word B ) |
334 |
187 333 50
|
syl2anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( M gsum w ) e. B ) |
335 |
1 3 108
|
mulgass3 |
|- ( ( R e. Ring /\ ( ( i ` f ) e. ZZ /\ ( M gsum w ) e. B /\ ( M gsum f ) e. B ) ) -> ( ( M gsum w ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) = ( ( i ` f ) .x. ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) ) |
336 |
181 186 334 192 335
|
syl13anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( M gsum w ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) = ( ( i ` f ) .x. ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) ) |
337 |
336
|
oveq2d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( g ` w ) .x. ( ( M gsum w ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) = ( ( g ` w ) .x. ( ( i ` f ) .x. ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) ) ) |
338 |
119
|
ad4ant13 |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( g ` w ) e. ZZ ) |
339 |
1 3 108
|
mulgass2 |
|- ( ( R e. Ring /\ ( ( g ` w ) e. ZZ /\ ( M gsum w ) e. B /\ ( ( i ` f ) .x. ( M gsum f ) ) e. B ) ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) = ( ( g ` w ) .x. ( ( M gsum w ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ) |
340 |
181 338 334 193 339
|
syl13anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) = ( ( g ` w ) .x. ( ( M gsum w ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ) |
341 |
1 108 181 334 192
|
ringcld |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) e. B ) |
342 |
1 3
|
mulgass |
|- ( ( R e. Grp /\ ( ( g ` w ) e. ZZ /\ ( i ` f ) e. ZZ /\ ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) e. B ) ) -> ( ( ( g ` w ) x. ( i ` f ) ) .x. ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) = ( ( g ` w ) .x. ( ( i ` f ) .x. ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) ) ) |
343 |
183 338 186 341 342
|
syl13anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( ( g ` w ) x. ( i ` f ) ) .x. ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) = ( ( g ` w ) .x. ( ( i ` f ) .x. ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) ) ) |
344 |
337 340 343
|
3eqtr4d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) = ( ( ( g ` w ) x. ( i ` f ) ) .x. ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) ) |
345 |
2 108
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
346 |
49 345
|
gsumccat |
|- ( ( M e. Mnd /\ w e. Word B /\ f e. Word B ) -> ( M gsum ( w ++ f ) ) = ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) |
347 |
187 333 190 346
|
syl3anc |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( M gsum ( w ++ f ) ) = ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) |
348 |
347
|
oveq2d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( ( g ` w ) x. ( i ` f ) ) .x. ( M gsum ( w ++ f ) ) ) = ( ( ( g ` w ) x. ( i ` f ) ) .x. ( ( M gsum w ) ( .r ` R ) ( M gsum f ) ) ) ) |
349 |
344 348
|
eqtr4d |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) = ( ( ( g ` w ) x. ( i ` f ) ) .x. ( M gsum ( w ++ f ) ) ) ) |
350 |
349
|
adantllr |
|- ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) = ( ( ( g ` w ) x. ( i ` f ) ) .x. ( M gsum ( w ++ f ) ) ) ) |
351 |
350
|
adantllr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) /\ w e. Word A ) /\ f e. Word A ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) = ( ( ( g ` w ) x. ( i ` f ) ) .x. ( M gsum ( w ++ f ) ) ) ) |
352 |
351
|
3impa |
|- ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) /\ w e. Word A /\ f e. Word A ) -> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) = ( ( ( g ` w ) x. ( i ` f ) ) .x. ( M gsum ( w ++ f ) ) ) ) |
353 |
352
|
mpoeq3dva |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) = ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) x. ( i ` f ) ) .x. ( M gsum ( w ++ f ) ) ) ) ) |
354 |
|
fveq2 |
|- ( w = ( v prefix j ) -> ( g ` w ) = ( g ` ( v prefix j ) ) ) |
355 |
|
fveq2 |
|- ( f = ( v substr <. j , ( # ` v ) >. ) -> ( i ` f ) = ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) |
356 |
354 355
|
oveqan12d |
|- ( ( w = ( v prefix j ) /\ f = ( v substr <. j , ( # ` v ) >. ) ) -> ( ( g ` w ) x. ( i ` f ) ) = ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) ) |
357 |
|
oveq12 |
|- ( ( w = ( v prefix j ) /\ f = ( v substr <. j , ( # ` v ) >. ) ) -> ( w ++ f ) = ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) |
358 |
357
|
oveq2d |
|- ( ( w = ( v prefix j ) /\ f = ( v substr <. j , ( # ` v ) >. ) ) -> ( M gsum ( w ++ f ) ) = ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) |
359 |
356 358
|
oveq12d |
|- ( ( w = ( v prefix j ) /\ f = ( v substr <. j , ( # ` v ) >. ) ) -> ( ( ( g ` w ) x. ( i ` f ) ) .x. ( M gsum ( w ++ f ) ) ) = ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) ) |
360 |
359
|
adantl |
|- ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) /\ ( w = ( v prefix j ) /\ f = ( v substr <. j , ( # ` v ) >. ) ) ) -> ( ( ( g ` w ) x. ( i ` f ) ) .x. ( M gsum ( w ++ f ) ) ) = ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) ) |
361 |
|
pfxcl |
|- ( v e. Word A -> ( v prefix j ) e. Word A ) |
362 |
361
|
ad2antlr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( v prefix j ) e. Word A ) |
363 |
|
swrdcl |
|- ( v e. Word A -> ( v substr <. j , ( # ` v ) >. ) e. Word A ) |
364 |
363
|
ad2antlr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( v substr <. j , ( # ` v ) >. ) e. Word A ) |
365 |
|
ovexd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) e. _V ) |
366 |
353 360 362 364 365
|
ovmpod |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( ( v prefix j ) ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ( v substr <. j , ( # ` v ) >. ) ) = ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) ) |
367 |
331 366
|
eqtr3id |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ` <. ( v prefix j ) , ( v substr <. j , ( # ` v ) >. ) >. ) = ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) ) |
368 |
367
|
mpteq2dva |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( j e. ( 0 ... ( # ` v ) ) |-> ( ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ` <. ( v prefix j ) , ( v substr <. j , ( # ` v ) >. ) >. ) ) = ( j e. ( 0 ... ( # ` v ) ) |-> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) ) ) |
369 |
368
|
oveq2d |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ` <. ( v prefix j ) , ( v substr <. j , ( # ` v ) >. ) >. ) ) ) = ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum ( ( v prefix j ) ++ ( v substr <. j , ( # ` v ) >. ) ) ) ) ) ) ) |
370 |
|
eqid |
|- ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) = ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) |
371 |
|
fveq2 |
|- ( t = v -> ( # ` t ) = ( # ` v ) ) |
372 |
371
|
oveq2d |
|- ( t = v -> ( 0 ... ( # ` t ) ) = ( 0 ... ( # ` v ) ) ) |
373 |
|
fvoveq1 |
|- ( t = v -> ( g ` ( t prefix j ) ) = ( g ` ( v prefix j ) ) ) |
374 |
|
id |
|- ( t = v -> t = v ) |
375 |
371
|
opeq2d |
|- ( t = v -> <. j , ( # ` t ) >. = <. j , ( # ` v ) >. ) |
376 |
374 375
|
oveq12d |
|- ( t = v -> ( t substr <. j , ( # ` t ) >. ) = ( v substr <. j , ( # ` v ) >. ) ) |
377 |
376
|
fveq2d |
|- ( t = v -> ( i ` ( t substr <. j , ( # ` t ) >. ) ) = ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) |
378 |
373 377
|
oveq12d |
|- ( t = v -> ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) = ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) ) |
379 |
378
|
adantr |
|- ( ( t = v /\ j e. ( 0 ... ( # ` t ) ) ) -> ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) = ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) ) |
380 |
372 379
|
sumeq12dv |
|- ( t = v -> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) = sum_ j e. ( 0 ... ( # ` v ) ) ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) ) |
381 |
|
simpr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> v e. Word A ) |
382 |
|
fzfid |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( 0 ... ( # ` v ) ) e. Fin ) |
383 |
294
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> g : Word A --> ZZ ) |
384 |
383 362
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( g ` ( v prefix j ) ) e. ZZ ) |
385 |
184
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> i : Word A --> ZZ ) |
386 |
385 364
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( i ` ( v substr <. j , ( # ` v ) >. ) ) e. ZZ ) |
387 |
384 386
|
zmulcld |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) e. ZZ ) |
388 |
387
|
zcnd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) /\ j e. ( 0 ... ( # ` v ) ) ) -> ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) e. CC ) |
389 |
382 388
|
fsumcl |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> sum_ j e. ( 0 ... ( # ` v ) ) ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) e. CC ) |
390 |
370 380 381 389
|
fvmptd3 |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) = sum_ j e. ( 0 ... ( # ` v ) ) ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) ) |
391 |
390
|
oveq1d |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) = ( sum_ j e. ( 0 ... ( # ` v ) ) ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum v ) ) ) |
392 |
111
|
ad3antrrr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> R e. Grp ) |
393 |
45
|
ad3antrrr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> M e. Mnd ) |
394 |
315 46
|
syl |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> Word A C_ Word B ) |
395 |
394
|
sselda |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> v e. Word B ) |
396 |
49
|
gsumwcl |
|- ( ( M e. Mnd /\ v e. Word B ) -> ( M gsum v ) e. B ) |
397 |
393 395 396
|
syl2anc |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( M gsum v ) e. B ) |
398 |
1 3 392 382 397 387
|
gsummulgc2 |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum v ) ) ) ) = ( sum_ j e. ( 0 ... ( # ` v ) ) ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum v ) ) ) |
399 |
391 398
|
eqtr4d |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) = ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( ( g ` ( v prefix j ) ) x. ( i ` ( v substr <. j , ( # ` v ) >. ) ) ) .x. ( M gsum v ) ) ) ) ) |
400 |
330 369 399
|
3eqtr4rd |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ v e. Word A ) -> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) = ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ` <. ( v prefix j ) , ( v substr <. j , ( # ` v ) >. ) >. ) ) ) ) |
401 |
400
|
mpteq2dva |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) = ( v e. Word A |-> ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ` <. ( v prefix j ) , ( v substr <. j , ( # ` v ) >. ) >. ) ) ) ) ) |
402 |
401
|
oveq2d |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) = ( R gsum ( v e. Word A |-> ( R gsum ( j e. ( 0 ... ( # ` v ) ) |-> ( ( w e. Word A , f e. Word A |-> ( ( ( g ` w ) .x. ( M gsum w ) ) ( .r ` R ) ( ( i ` f ) .x. ( M gsum f ) ) ) ) ` <. ( v prefix j ) , ( v substr <. j , ( # ` v ) >. ) >. ) ) ) ) ) ) |
403 |
316 324 402
|
3eqtr4d |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( u e. Word A , v e. Word A |-> ( ( ( g ` u ) .x. ( M gsum u ) ) ( .r ` R ) ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) = ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) ) |
404 |
176 180 403
|
3eqtr3d |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( .r ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) = ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) ) |
405 |
|
fveq1 |
|- ( g = h -> ( g ` w ) = ( h ` w ) ) |
406 |
405
|
oveq1d |
|- ( g = h -> ( ( g ` w ) .x. ( M gsum w ) ) = ( ( h ` w ) .x. ( M gsum w ) ) ) |
407 |
406
|
mpteq2dv |
|- ( g = h -> ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) |
408 |
407
|
oveq2d |
|- ( g = h -> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) |
409 |
408
|
cbvmptv |
|- ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) |
410 |
|
fveq1 |
|- ( h = ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) -> ( h ` w ) = ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) ) |
411 |
410
|
oveq1d |
|- ( h = ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) -> ( ( h ` w ) .x. ( M gsum w ) ) = ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) .x. ( M gsum w ) ) ) |
412 |
411
|
mpteq2dv |
|- ( h = ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) -> ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) .x. ( M gsum w ) ) ) ) |
413 |
412
|
oveq2d |
|- ( h = ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) -> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) .x. ( M gsum w ) ) ) ) ) |
414 |
413
|
eqeq2d |
|- ( h = ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) -> ( ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) <-> ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) .x. ( M gsum w ) ) ) ) ) ) |
415 |
|
breq1 |
|- ( f = ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) -> ( f finSupp 0 <-> ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) finSupp 0 ) ) |
416 |
78
|
a1i |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ZZ e. _V ) |
417 |
|
fzfid |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ t e. Word A ) -> ( 0 ... ( # ` t ) ) e. Fin ) |
418 |
294
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ t e. Word A ) /\ j e. ( 0 ... ( # ` t ) ) ) -> g : Word A --> ZZ ) |
419 |
|
pfxcl |
|- ( t e. Word A -> ( t prefix j ) e. Word A ) |
420 |
419
|
ad2antlr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ t e. Word A ) /\ j e. ( 0 ... ( # ` t ) ) ) -> ( t prefix j ) e. Word A ) |
421 |
418 420
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ t e. Word A ) /\ j e. ( 0 ... ( # ` t ) ) ) -> ( g ` ( t prefix j ) ) e. ZZ ) |
422 |
184
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ t e. Word A ) /\ j e. ( 0 ... ( # ` t ) ) ) -> i : Word A --> ZZ ) |
423 |
|
swrdcl |
|- ( t e. Word A -> ( t substr <. j , ( # ` t ) >. ) e. Word A ) |
424 |
423
|
ad2antlr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ t e. Word A ) /\ j e. ( 0 ... ( # ` t ) ) ) -> ( t substr <. j , ( # ` t ) >. ) e. Word A ) |
425 |
422 424
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ t e. Word A ) /\ j e. ( 0 ... ( # ` t ) ) ) -> ( i ` ( t substr <. j , ( # ` t ) >. ) ) e. ZZ ) |
426 |
421 425
|
zmulcld |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ t e. Word A ) /\ j e. ( 0 ... ( # ` t ) ) ) -> ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) e. ZZ ) |
427 |
417 426
|
fsumzcl |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ t e. Word A ) -> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) e. ZZ ) |
428 |
427
|
fmpttd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) : Word A --> ZZ ) |
429 |
416 109 428
|
elmapdd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) e. ( ZZ ^m Word A ) ) |
430 |
|
0zd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> 0 e. ZZ ) |
431 |
428
|
ffund |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> Fun ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ) |
432 |
|
ccatfn |
|- ++ Fn ( _V X. _V ) |
433 |
|
fnfun |
|- ( ++ Fn ( _V X. _V ) -> Fun ++ ) |
434 |
432 433
|
ax-mp |
|- Fun ++ |
435 |
|
imafi |
|- ( ( Fun ++ /\ ( ( g supp 0 ) X. ( i supp 0 ) ) e. Fin ) -> ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) e. Fin ) |
436 |
434 244 435
|
sylancr |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) e. Fin ) |
437 |
|
fveq2 |
|- ( t = w -> ( # ` t ) = ( # ` w ) ) |
438 |
437
|
oveq2d |
|- ( t = w -> ( 0 ... ( # ` t ) ) = ( 0 ... ( # ` w ) ) ) |
439 |
|
fvoveq1 |
|- ( t = w -> ( g ` ( t prefix j ) ) = ( g ` ( w prefix j ) ) ) |
440 |
|
id |
|- ( t = w -> t = w ) |
441 |
437
|
opeq2d |
|- ( t = w -> <. j , ( # ` t ) >. = <. j , ( # ` w ) >. ) |
442 |
440 441
|
oveq12d |
|- ( t = w -> ( t substr <. j , ( # ` t ) >. ) = ( w substr <. j , ( # ` w ) >. ) ) |
443 |
442
|
fveq2d |
|- ( t = w -> ( i ` ( t substr <. j , ( # ` t ) >. ) ) = ( i ` ( w substr <. j , ( # ` w ) >. ) ) ) |
444 |
439 443
|
oveq12d |
|- ( t = w -> ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) = ( ( g ` ( w prefix j ) ) x. ( i ` ( w substr <. j , ( # ` w ) >. ) ) ) ) |
445 |
444
|
adantr |
|- ( ( t = w /\ j e. ( 0 ... ( # ` t ) ) ) -> ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) = ( ( g ` ( w prefix j ) ) x. ( i ` ( w substr <. j , ( # ` w ) >. ) ) ) ) |
446 |
438 445
|
sumeq12dv |
|- ( t = w -> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) = sum_ j e. ( 0 ... ( # ` w ) ) ( ( g ` ( w prefix j ) ) x. ( i ` ( w substr <. j , ( # ` w ) >. ) ) ) ) |
447 |
|
oveq1 |
|- ( u = ( w prefix j ) -> ( u ++ v ) = ( ( w prefix j ) ++ v ) ) |
448 |
447
|
eqeq2d |
|- ( u = ( w prefix j ) -> ( w = ( u ++ v ) <-> w = ( ( w prefix j ) ++ v ) ) ) |
449 |
|
oveq2 |
|- ( v = ( w substr <. j , ( # ` w ) >. ) -> ( ( w prefix j ) ++ v ) = ( ( w prefix j ) ++ ( w substr <. j , ( # ` w ) >. ) ) ) |
450 |
449
|
eqeq2d |
|- ( v = ( w substr <. j , ( # ` w ) >. ) -> ( w = ( ( w prefix j ) ++ v ) <-> w = ( ( w prefix j ) ++ ( w substr <. j , ( # ` w ) >. ) ) ) ) |
451 |
246
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> g Fn Word A ) |
452 |
109
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> Word A e. _V ) |
453 |
|
0zd |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> 0 e. ZZ ) |
454 |
|
simpr |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) -> w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) |
455 |
454
|
eldifad |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) -> w e. Word A ) |
456 |
455
|
adantr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> w e. Word A ) |
457 |
|
pfxcl |
|- ( w e. Word A -> ( w prefix j ) e. Word A ) |
458 |
456 457
|
syl |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> ( w prefix j ) e. Word A ) |
459 |
458
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> ( w prefix j ) e. Word A ) |
460 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> ( g ` ( w prefix j ) ) =/= 0 ) |
461 |
451 452 453 459 460
|
elsuppfnd |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> ( w prefix j ) e. ( g supp 0 ) ) |
462 |
275
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> i Fn Word A ) |
463 |
|
swrdcl |
|- ( w e. Word A -> ( w substr <. j , ( # ` w ) >. ) e. Word A ) |
464 |
456 463
|
syl |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> ( w substr <. j , ( # ` w ) >. ) e. Word A ) |
465 |
464
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> ( w substr <. j , ( # ` w ) >. ) e. Word A ) |
466 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) |
467 |
462 452 453 465 466
|
elsuppfnd |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> ( w substr <. j , ( # ` w ) >. ) e. ( i supp 0 ) ) |
468 |
456
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> w e. Word A ) |
469 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> j e. ( 0 ... ( # ` w ) ) ) |
470 |
|
pfxcctswrd |
|- ( ( w e. Word A /\ j e. ( 0 ... ( # ` w ) ) ) -> ( ( w prefix j ) ++ ( w substr <. j , ( # ` w ) >. ) ) = w ) |
471 |
468 469 470
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> ( ( w prefix j ) ++ ( w substr <. j , ( # ` w ) >. ) ) = w ) |
472 |
471
|
eqcomd |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> w = ( ( w prefix j ) ++ ( w substr <. j , ( # ` w ) >. ) ) ) |
473 |
448 450 461 467 472
|
2rspcedvdw |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> E. u e. ( g supp 0 ) E. v e. ( i supp 0 ) w = ( u ++ v ) ) |
474 |
|
fnov |
|- ( ++ Fn ( _V X. _V ) <-> ++ = ( u e. _V , v e. _V |-> ( u ++ v ) ) ) |
475 |
432 474
|
mpbi |
|- ++ = ( u e. _V , v e. _V |-> ( u ++ v ) ) |
476 |
200
|
a1i |
|- ( T. -> w e. _V ) |
477 |
|
ssv |
|- ( g supp 0 ) C_ _V |
478 |
477
|
a1i |
|- ( T. -> ( g supp 0 ) C_ _V ) |
479 |
|
ssv |
|- ( i supp 0 ) C_ _V |
480 |
479
|
a1i |
|- ( T. -> ( i supp 0 ) C_ _V ) |
481 |
475 476 478 480
|
elimampo |
|- ( T. -> ( w e. ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) <-> E. u e. ( g supp 0 ) E. v e. ( i supp 0 ) w = ( u ++ v ) ) ) |
482 |
481
|
mptru |
|- ( w e. ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) <-> E. u e. ( g supp 0 ) E. v e. ( i supp 0 ) w = ( u ++ v ) ) |
483 |
473 482
|
sylibr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> w e. ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) |
484 |
483
|
anasss |
|- ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( ( g ` ( w prefix j ) ) =/= 0 /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) ) -> w e. ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) |
485 |
454
|
ad3antrrr |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) |
486 |
485
|
eldifbd |
|- ( ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( g ` ( w prefix j ) ) =/= 0 ) /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) -> -. w e. ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) |
487 |
486
|
anasss |
|- ( ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) /\ ( ( g ` ( w prefix j ) ) =/= 0 /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) ) -> -. w e. ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) |
488 |
484 487
|
pm2.65da |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> -. ( ( g ` ( w prefix j ) ) =/= 0 /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) ) |
489 |
|
df-ne |
|- ( ( g ` ( w prefix j ) ) =/= 0 <-> -. ( g ` ( w prefix j ) ) = 0 ) |
490 |
|
df-ne |
|- ( ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 <-> -. ( i ` ( w substr <. j , ( # ` w ) >. ) ) = 0 ) |
491 |
489 490
|
anbi12i |
|- ( ( ( g ` ( w prefix j ) ) =/= 0 /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) <-> ( -. ( g ` ( w prefix j ) ) = 0 /\ -. ( i ` ( w substr <. j , ( # ` w ) >. ) ) = 0 ) ) |
492 |
491
|
notbii |
|- ( -. ( ( g ` ( w prefix j ) ) =/= 0 /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) <-> -. ( -. ( g ` ( w prefix j ) ) = 0 /\ -. ( i ` ( w substr <. j , ( # ` w ) >. ) ) = 0 ) ) |
493 |
|
pm4.57 |
|- ( -. ( -. ( g ` ( w prefix j ) ) = 0 /\ -. ( i ` ( w substr <. j , ( # ` w ) >. ) ) = 0 ) <-> ( ( g ` ( w prefix j ) ) = 0 \/ ( i ` ( w substr <. j , ( # ` w ) >. ) ) = 0 ) ) |
494 |
492 493
|
bitr2i |
|- ( ( ( g ` ( w prefix j ) ) = 0 \/ ( i ` ( w substr <. j , ( # ` w ) >. ) ) = 0 ) <-> -. ( ( g ` ( w prefix j ) ) =/= 0 /\ ( i ` ( w substr <. j , ( # ` w ) >. ) ) =/= 0 ) ) |
495 |
488 494
|
sylibr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> ( ( g ` ( w prefix j ) ) = 0 \/ ( i ` ( w substr <. j , ( # ` w ) >. ) ) = 0 ) ) |
496 |
294
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> g : Word A --> ZZ ) |
497 |
496 458
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> ( g ` ( w prefix j ) ) e. ZZ ) |
498 |
497
|
zcnd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> ( g ` ( w prefix j ) ) e. CC ) |
499 |
184
|
ad2antrr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> i : Word A --> ZZ ) |
500 |
499 464
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> ( i ` ( w substr <. j , ( # ` w ) >. ) ) e. ZZ ) |
501 |
500
|
zcnd |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> ( i ` ( w substr <. j , ( # ` w ) >. ) ) e. CC ) |
502 |
498 501
|
mul0ord |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> ( ( ( g ` ( w prefix j ) ) x. ( i ` ( w substr <. j , ( # ` w ) >. ) ) ) = 0 <-> ( ( g ` ( w prefix j ) ) = 0 \/ ( i ` ( w substr <. j , ( # ` w ) >. ) ) = 0 ) ) ) |
503 |
495 502
|
mpbird |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ j e. ( 0 ... ( # ` w ) ) ) -> ( ( g ` ( w prefix j ) ) x. ( i ` ( w substr <. j , ( # ` w ) >. ) ) ) = 0 ) |
504 |
503
|
sumeq2dv |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) -> sum_ j e. ( 0 ... ( # ` w ) ) ( ( g ` ( w prefix j ) ) x. ( i ` ( w substr <. j , ( # ` w ) >. ) ) ) = sum_ j e. ( 0 ... ( # ` w ) ) 0 ) |
505 |
|
fzssuz |
|- ( 0 ... ( # ` w ) ) C_ ( ZZ>= ` 0 ) |
506 |
|
sumz |
|- ( ( ( 0 ... ( # ` w ) ) C_ ( ZZ>= ` 0 ) \/ ( 0 ... ( # ` w ) ) e. Fin ) -> sum_ j e. ( 0 ... ( # ` w ) ) 0 = 0 ) |
507 |
506
|
orcs |
|- ( ( 0 ... ( # ` w ) ) C_ ( ZZ>= ` 0 ) -> sum_ j e. ( 0 ... ( # ` w ) ) 0 = 0 ) |
508 |
505 507
|
mp1i |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) -> sum_ j e. ( 0 ... ( # ` w ) ) 0 = 0 ) |
509 |
504 508
|
eqtrd |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) -> sum_ j e. ( 0 ... ( # ` w ) ) ( ( g ` ( w prefix j ) ) x. ( i ` ( w substr <. j , ( # ` w ) >. ) ) ) = 0 ) |
510 |
446 509
|
sylan9eqr |
|- ( ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) /\ t = w ) -> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) = 0 ) |
511 |
|
0zd |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) -> 0 e. ZZ ) |
512 |
370 510 455 511
|
fvmptd2 |
|- ( ( ( ( ph /\ g e. F ) /\ i e. F ) /\ w e. ( Word A \ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) ) -> ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) = 0 ) |
513 |
428 512
|
suppss |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) supp 0 ) C_ ( ++ " ( ( g supp 0 ) X. ( i supp 0 ) ) ) ) |
514 |
436 513
|
ssfid |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) supp 0 ) e. Fin ) |
515 |
429 430 431 514
|
isfsuppd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) finSupp 0 ) |
516 |
415 429 515
|
elrabd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) e. { f e. ( ZZ ^m Word A ) | f finSupp 0 } ) |
517 |
516 5
|
eleqtrrdi |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) e. F ) |
518 |
|
fveq2 |
|- ( v = w -> ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) = ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) ) |
519 |
518 145
|
oveq12d |
|- ( v = w -> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) = ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) .x. ( M gsum w ) ) ) |
520 |
519
|
cbvmptv |
|- ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) = ( w e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) .x. ( M gsum w ) ) ) |
521 |
520
|
oveq2i |
|- ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) .x. ( M gsum w ) ) ) ) |
522 |
521
|
a1i |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` w ) .x. ( M gsum w ) ) ) ) ) |
523 |
414 517 522
|
rspcedvdw |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> E. h e. F ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) |
524 |
|
ovexd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) e. _V ) |
525 |
409 523 524
|
elrnmptd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
526 |
525 8
|
eleqtrrdi |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( R gsum ( v e. Word A |-> ( ( ( t e. Word A |-> sum_ j e. ( 0 ... ( # ` t ) ) ( ( g ` ( t prefix j ) ) x. ( i ` ( t substr <. j , ( # ` t ) >. ) ) ) ) ` v ) .x. ( M gsum v ) ) ) ) e. S ) |
527 |
404 526
|
eqeltrd |
|- ( ( ( ph /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( .r ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) e. S ) |
528 |
527
|
adantllr |
|- ( ( ( ( ph /\ x e. S ) /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( .r ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) e. S ) |
529 |
528
|
adantllr |
|- ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ i e. F ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( .r ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) e. S ) |
530 |
529
|
adantlr |
|- ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( .r ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) e. S ) |
531 |
530
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> ( ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ( .r ` R ) ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) e. S ) |
532 |
107 531
|
eqeltrd |
|- ( ( ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) /\ i e. F ) /\ y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) -> ( x ( .r ` R ) y ) e. S ) |
533 |
8
|
eleq2i |
|- ( y e. S <-> y e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
534 |
169
|
oveq2d |
|- ( g = i -> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
535 |
534
|
cbvmptv |
|- ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) = ( i e. F |-> ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
536 |
535
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) ) |
537 |
536
|
elv |
|- ( y e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
538 |
533 537
|
sylbb |
|- ( y e. S -> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
539 |
538
|
adantl |
|- ( ( ( ph /\ x e. S ) /\ y e. S ) -> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
540 |
539
|
ad2antrr |
|- ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> E. i e. F y = ( R gsum ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) ) |
541 |
532 540
|
r19.29a |
|- ( ( ( ( ( ph /\ x e. S ) /\ y e. S ) /\ g e. F ) /\ x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) -> ( x ( .r ` R ) y ) e. S ) |
542 |
8
|
eleq2i |
|- ( x e. S <-> x e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
543 |
71
|
elrnmpt |
|- ( x e. _V -> ( x e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. g e. F x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
544 |
543
|
elv |
|- ( x e. ran ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. g e. F x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
545 |
542 544
|
sylbb |
|- ( x e. S -> E. g e. F x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
546 |
545
|
ad2antlr |
|- ( ( ( ph /\ x e. S ) /\ y e. S ) -> E. g e. F x = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
547 |
541 546
|
r19.29a |
|- ( ( ( ph /\ x e. S ) /\ y e. S ) -> ( x ( .r ` R ) y ) e. S ) |
548 |
547
|
anasss |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x ( .r ` R ) y ) e. S ) |
549 |
548
|
ralrimivva |
|- ( ph -> A. x e. S A. y e. S ( x ( .r ` R ) y ) e. S ) |
550 |
1 24 108
|
issubrg2 |
|- ( R e. Ring -> ( S e. ( SubRing ` R ) <-> ( S e. ( SubGrp ` R ) /\ ( 1r ` R ) e. S /\ A. x e. S A. y e. S ( x ( .r ` R ) y ) e. S ) ) ) |
551 |
550
|
biimpar |
|- ( ( R e. Ring /\ ( S e. ( SubGrp ` R ) /\ ( 1r ` R ) e. S /\ A. x e. S A. y e. S ( x ( .r ` R ) y ) e. S ) ) -> S e. ( SubRing ` R ) ) |
552 |
6 9 104 549 551
|
syl13anc |
|- ( ph -> S e. ( SubRing ` R ) ) |