| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem68.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem68.xre |
|- ( ph -> X e. RR ) |
| 3 |
|
fourierdlem68.a |
|- ( ph -> A e. RR ) |
| 4 |
|
fourierdlem68.b |
|- ( ph -> B e. RR ) |
| 5 |
|
fourierdlem68.altb |
|- ( ph -> A < B ) |
| 6 |
|
fourierdlem68.ab |
|- ( ph -> ( A [,] B ) C_ ( -u _pi [,] _pi ) ) |
| 7 |
|
fourierdlem68.n0 |
|- ( ph -> -. 0 e. ( A [,] B ) ) |
| 8 |
|
fourierdlem68.fdv |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
| 9 |
|
fourierdlem68.d |
|- ( ph -> D e. RR ) |
| 10 |
|
fourierdlem68.fbd |
|- ( ( ph /\ t e. ( ( X + A ) (,) ( X + B ) ) ) -> ( abs ` ( F ` t ) ) <_ D ) |
| 11 |
|
fourierdlem68.e |
|- ( ph -> E e. RR ) |
| 12 |
|
fourierdlem68.fdvbd |
|- ( ( ph /\ t e. ( ( X + A ) (,) ( X + B ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` t ) ) <_ E ) |
| 13 |
|
fourierdlem68.c |
|- ( ph -> C e. RR ) |
| 14 |
|
fourierdlem68.o |
|- O = ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 15 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
| 16 |
15 6
|
sstrid |
|- ( ph -> ( A (,) B ) C_ ( -u _pi [,] _pi ) ) |
| 17 |
15
|
sseli |
|- ( 0 e. ( A (,) B ) -> 0 e. ( A [,] B ) ) |
| 18 |
7 17
|
nsyl |
|- ( ph -> -. 0 e. ( A (,) B ) ) |
| 19 |
1 2 3 4 8 16 18 13 14
|
fourierdlem57 |
|- ( ( ph -> ( ( RR _D O ) : ( A (,) B ) --> RR /\ ( RR _D O ) = ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) ) ) /\ ( RR _D ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s e. ( A (,) B ) |-> ( cos ` ( s / 2 ) ) ) ) |
| 20 |
19
|
simpli |
|- ( ph -> ( ( RR _D O ) : ( A (,) B ) --> RR /\ ( RR _D O ) = ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) ) ) |
| 21 |
20
|
simpld |
|- ( ph -> ( RR _D O ) : ( A (,) B ) --> RR ) |
| 22 |
21
|
fdmd |
|- ( ph -> dom ( RR _D O ) = ( A (,) B ) ) |
| 23 |
|
eqid |
|- ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) = ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) |
| 24 |
3 4 5
|
ltled |
|- ( ph -> A <_ B ) |
| 25 |
|
2re |
|- 2 e. RR |
| 26 |
25
|
a1i |
|- ( ( ph /\ t e. ( A [,] B ) ) -> 2 e. RR ) |
| 27 |
3 4
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 28 |
27
|
sselda |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. RR ) |
| 29 |
28
|
rehalfcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t / 2 ) e. RR ) |
| 30 |
29
|
resincld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( sin ` ( t / 2 ) ) e. RR ) |
| 31 |
26 30
|
remulcld |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( 2 x. ( sin ` ( t / 2 ) ) ) e. RR ) |
| 32 |
|
2cnd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> 2 e. CC ) |
| 33 |
30
|
recnd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( sin ` ( t / 2 ) ) e. CC ) |
| 34 |
|
2ne0 |
|- 2 =/= 0 |
| 35 |
34
|
a1i |
|- ( ( ph /\ t e. ( A [,] B ) ) -> 2 =/= 0 ) |
| 36 |
6
|
sselda |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. ( -u _pi [,] _pi ) ) |
| 37 |
|
eqcom |
|- ( t = 0 <-> 0 = t ) |
| 38 |
37
|
biimpi |
|- ( t = 0 -> 0 = t ) |
| 39 |
38
|
adantl |
|- ( ( t e. ( A [,] B ) /\ t = 0 ) -> 0 = t ) |
| 40 |
|
simpl |
|- ( ( t e. ( A [,] B ) /\ t = 0 ) -> t e. ( A [,] B ) ) |
| 41 |
39 40
|
eqeltrd |
|- ( ( t e. ( A [,] B ) /\ t = 0 ) -> 0 e. ( A [,] B ) ) |
| 42 |
41
|
adantll |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ t = 0 ) -> 0 e. ( A [,] B ) ) |
| 43 |
7
|
ad2antrr |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ t = 0 ) -> -. 0 e. ( A [,] B ) ) |
| 44 |
42 43
|
pm2.65da |
|- ( ( ph /\ t e. ( A [,] B ) ) -> -. t = 0 ) |
| 45 |
44
|
neqned |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t =/= 0 ) |
| 46 |
|
fourierdlem44 |
|- ( ( t e. ( -u _pi [,] _pi ) /\ t =/= 0 ) -> ( sin ` ( t / 2 ) ) =/= 0 ) |
| 47 |
36 45 46
|
syl2anc |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( sin ` ( t / 2 ) ) =/= 0 ) |
| 48 |
32 33 35 47
|
mulne0d |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( 2 x. ( sin ` ( t / 2 ) ) ) =/= 0 ) |
| 49 |
|
eldifsn |
|- ( ( 2 x. ( sin ` ( t / 2 ) ) ) e. ( RR \ { 0 } ) <-> ( ( 2 x. ( sin ` ( t / 2 ) ) ) e. RR /\ ( 2 x. ( sin ` ( t / 2 ) ) ) =/= 0 ) ) |
| 50 |
31 48 49
|
sylanbrc |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( 2 x. ( sin ` ( t / 2 ) ) ) e. ( RR \ { 0 } ) ) |
| 51 |
50 23
|
fmptd |
|- ( ph -> ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) : ( A [,] B ) --> ( RR \ { 0 } ) ) |
| 52 |
|
difss |
|- ( RR \ { 0 } ) C_ RR |
| 53 |
|
ax-resscn |
|- RR C_ CC |
| 54 |
52 53
|
sstri |
|- ( RR \ { 0 } ) C_ CC |
| 55 |
54
|
a1i |
|- ( ph -> ( RR \ { 0 } ) C_ CC ) |
| 56 |
27 53
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 57 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 58 |
|
ssid |
|- CC C_ CC |
| 59 |
58
|
a1i |
|- ( ph -> CC C_ CC ) |
| 60 |
56 57 59
|
constcncfg |
|- ( ph -> ( t e. ( A [,] B ) |-> 2 ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 61 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
| 62 |
61
|
a1i |
|- ( ph -> sin e. ( CC -cn-> CC ) ) |
| 63 |
56 59
|
idcncfg |
|- ( ph -> ( t e. ( A [,] B ) |-> t ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 64 |
|
eldifsn |
|- ( 2 e. ( CC \ { 0 } ) <-> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 65 |
32 35 64
|
sylanbrc |
|- ( ( ph /\ t e. ( A [,] B ) ) -> 2 e. ( CC \ { 0 } ) ) |
| 66 |
|
eqid |
|- ( t e. ( A [,] B ) |-> 2 ) = ( t e. ( A [,] B ) |-> 2 ) |
| 67 |
65 66
|
fmptd |
|- ( ph -> ( t e. ( A [,] B ) |-> 2 ) : ( A [,] B ) --> ( CC \ { 0 } ) ) |
| 68 |
|
difssd |
|- ( ph -> ( CC \ { 0 } ) C_ CC ) |
| 69 |
|
cncfcdm |
|- ( ( ( CC \ { 0 } ) C_ CC /\ ( t e. ( A [,] B ) |-> 2 ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( t e. ( A [,] B ) |-> 2 ) e. ( ( A [,] B ) -cn-> ( CC \ { 0 } ) ) <-> ( t e. ( A [,] B ) |-> 2 ) : ( A [,] B ) --> ( CC \ { 0 } ) ) ) |
| 70 |
68 60 69
|
syl2anc |
|- ( ph -> ( ( t e. ( A [,] B ) |-> 2 ) e. ( ( A [,] B ) -cn-> ( CC \ { 0 } ) ) <-> ( t e. ( A [,] B ) |-> 2 ) : ( A [,] B ) --> ( CC \ { 0 } ) ) ) |
| 71 |
67 70
|
mpbird |
|- ( ph -> ( t e. ( A [,] B ) |-> 2 ) e. ( ( A [,] B ) -cn-> ( CC \ { 0 } ) ) ) |
| 72 |
63 71
|
divcncf |
|- ( ph -> ( t e. ( A [,] B ) |-> ( t / 2 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 73 |
62 72
|
cncfmpt1f |
|- ( ph -> ( t e. ( A [,] B ) |-> ( sin ` ( t / 2 ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 74 |
60 73
|
mulcncf |
|- ( ph -> ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 75 |
|
cncfcdm |
|- ( ( ( RR \ { 0 } ) C_ CC /\ ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) e. ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) <-> ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) : ( A [,] B ) --> ( RR \ { 0 } ) ) ) |
| 76 |
55 74 75
|
syl2anc |
|- ( ph -> ( ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) e. ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) <-> ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) : ( A [,] B ) --> ( RR \ { 0 } ) ) ) |
| 77 |
51 76
|
mpbird |
|- ( ph -> ( t e. ( A [,] B ) |-> ( 2 x. ( sin ` ( t / 2 ) ) ) ) e. ( ( A [,] B ) -cn-> ( RR \ { 0 } ) ) ) |
| 78 |
23 3 4 24 77
|
cncficcgt0 |
|- ( ph -> E. c e. RR+ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) |
| 79 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 80 |
79
|
a1i |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> RR e. { RR , CC } ) |
| 81 |
1
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> F : RR --> RR ) |
| 82 |
2
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> X e. RR ) |
| 83 |
|
elioore |
|- ( s e. ( A (,) B ) -> s e. RR ) |
| 84 |
83
|
adantl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR ) |
| 85 |
82 84
|
readdcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. RR ) |
| 86 |
81 85
|
ffvelcdmd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. RR ) |
| 87 |
13
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> C e. RR ) |
| 88 |
86 87
|
resubcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. RR ) |
| 89 |
88
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. CC ) |
| 90 |
89
|
3ad2antl1 |
|- ( ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. CC ) |
| 91 |
79
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 92 |
86
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. CC ) |
| 93 |
8
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
| 94 |
2 3
|
readdcld |
|- ( ph -> ( X + A ) e. RR ) |
| 95 |
94
|
rexrd |
|- ( ph -> ( X + A ) e. RR* ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) e. RR* ) |
| 97 |
2 4
|
readdcld |
|- ( ph -> ( X + B ) e. RR ) |
| 98 |
97
|
rexrd |
|- ( ph -> ( X + B ) e. RR* ) |
| 99 |
98
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + B ) e. RR* ) |
| 100 |
3
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR ) |
| 101 |
100
|
rexrd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR* ) |
| 102 |
4
|
rexrd |
|- ( ph -> B e. RR* ) |
| 103 |
102
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR* ) |
| 104 |
|
simpr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( A (,) B ) ) |
| 105 |
|
ioogtlb |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> A < s ) |
| 106 |
101 103 104 105
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A < s ) |
| 107 |
100 84 82 106
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) < ( X + s ) ) |
| 108 |
4
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR ) |
| 109 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> s < B ) |
| 110 |
101 103 104 109
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s < B ) |
| 111 |
84 108 82 110
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) < ( X + B ) ) |
| 112 |
96 99 85 107 111
|
eliood |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) |
| 113 |
93 112
|
ffvelcdmd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) e. RR ) |
| 114 |
|
eqid |
|- ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) |
| 115 |
1 2 3 4 114 8
|
fourierdlem28 |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) ) = ( s e. ( A (,) B ) |-> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) ) |
| 116 |
87
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> C e. CC ) |
| 117 |
|
0red |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 0 e. RR ) |
| 118 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
| 119 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 120 |
118 119
|
eleqtri |
|- ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
| 121 |
120
|
a1i |
|- ( ph -> ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 122 |
13
|
recnd |
|- ( ph -> C e. CC ) |
| 123 |
91 121 122
|
dvmptconst |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> C ) ) = ( s e. ( A (,) B ) |-> 0 ) ) |
| 124 |
91 92 113 115 116 117 123
|
dvmptsub |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) ) = ( s e. ( A (,) B ) |-> ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) - 0 ) ) ) |
| 125 |
113
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) e. CC ) |
| 126 |
125
|
subid1d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) - 0 ) = ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) |
| 127 |
126
|
mpteq2dva |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) - 0 ) ) = ( s e. ( A (,) B ) |-> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) ) |
| 128 |
124 127
|
eqtrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) ) = ( s e. ( A (,) B ) |-> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) ) |
| 129 |
128
|
3ad2ant1 |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> ( RR _D ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) ) = ( s e. ( A (,) B ) |-> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) ) |
| 130 |
125
|
3ad2antl1 |
|- ( ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) e. CC ) |
| 131 |
|
2cnd |
|- ( s e. ( A (,) B ) -> 2 e. CC ) |
| 132 |
83
|
recnd |
|- ( s e. ( A (,) B ) -> s e. CC ) |
| 133 |
132
|
halfcld |
|- ( s e. ( A (,) B ) -> ( s / 2 ) e. CC ) |
| 134 |
133
|
sincld |
|- ( s e. ( A (,) B ) -> ( sin ` ( s / 2 ) ) e. CC ) |
| 135 |
131 134
|
mulcld |
|- ( s e. ( A (,) B ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
| 136 |
135
|
adantl |
|- ( ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
| 137 |
11
|
3ad2ant1 |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> E e. RR ) |
| 138 |
|
1re |
|- 1 e. RR |
| 139 |
25 138
|
remulcli |
|- ( 2 x. 1 ) e. RR |
| 140 |
139
|
a1i |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> ( 2 x. 1 ) e. RR ) |
| 141 |
|
1red |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> 1 e. RR ) |
| 142 |
122
|
abscld |
|- ( ph -> ( abs ` C ) e. RR ) |
| 143 |
9 142
|
readdcld |
|- ( ph -> ( D + ( abs ` C ) ) e. RR ) |
| 144 |
143
|
3ad2ant1 |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> ( D + ( abs ` C ) ) e. RR ) |
| 145 |
|
simpl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ph ) |
| 146 |
145 112
|
jca |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ph /\ ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) ) |
| 147 |
|
eleq1 |
|- ( t = ( X + s ) -> ( t e. ( ( X + A ) (,) ( X + B ) ) <-> ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) ) |
| 148 |
147
|
anbi2d |
|- ( t = ( X + s ) -> ( ( ph /\ t e. ( ( X + A ) (,) ( X + B ) ) ) <-> ( ph /\ ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) ) ) |
| 149 |
|
fveq2 |
|- ( t = ( X + s ) -> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` t ) = ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) |
| 150 |
149
|
fveq2d |
|- ( t = ( X + s ) -> ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) ) |
| 151 |
150
|
breq1d |
|- ( t = ( X + s ) -> ( ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` t ) ) <_ E <-> ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) <_ E ) ) |
| 152 |
148 151
|
imbi12d |
|- ( t = ( X + s ) -> ( ( ( ph /\ t e. ( ( X + A ) (,) ( X + B ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` t ) ) <_ E ) <-> ( ( ph /\ ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) <_ E ) ) ) |
| 153 |
152 12
|
vtoclg |
|- ( ( X + s ) e. RR -> ( ( ph /\ ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) <_ E ) ) |
| 154 |
85 146 153
|
sylc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) <_ E ) |
| 155 |
154
|
3ad2antl1 |
|- ( ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> ( abs ` ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) <_ E ) |
| 156 |
131 134
|
absmuld |
|- ( s e. ( A (,) B ) -> ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( ( abs ` 2 ) x. ( abs ` ( sin ` ( s / 2 ) ) ) ) ) |
| 157 |
|
0le2 |
|- 0 <_ 2 |
| 158 |
|
absid |
|- ( ( 2 e. RR /\ 0 <_ 2 ) -> ( abs ` 2 ) = 2 ) |
| 159 |
25 157 158
|
mp2an |
|- ( abs ` 2 ) = 2 |
| 160 |
159
|
oveq1i |
|- ( ( abs ` 2 ) x. ( abs ` ( sin ` ( s / 2 ) ) ) ) = ( 2 x. ( abs ` ( sin ` ( s / 2 ) ) ) ) |
| 161 |
134
|
abscld |
|- ( s e. ( A (,) B ) -> ( abs ` ( sin ` ( s / 2 ) ) ) e. RR ) |
| 162 |
|
1red |
|- ( s e. ( A (,) B ) -> 1 e. RR ) |
| 163 |
25
|
a1i |
|- ( s e. ( A (,) B ) -> 2 e. RR ) |
| 164 |
157
|
a1i |
|- ( s e. ( A (,) B ) -> 0 <_ 2 ) |
| 165 |
83
|
rehalfcld |
|- ( s e. ( A (,) B ) -> ( s / 2 ) e. RR ) |
| 166 |
|
abssinbd |
|- ( ( s / 2 ) e. RR -> ( abs ` ( sin ` ( s / 2 ) ) ) <_ 1 ) |
| 167 |
165 166
|
syl |
|- ( s e. ( A (,) B ) -> ( abs ` ( sin ` ( s / 2 ) ) ) <_ 1 ) |
| 168 |
161 162 163 164 167
|
lemul2ad |
|- ( s e. ( A (,) B ) -> ( 2 x. ( abs ` ( sin ` ( s / 2 ) ) ) ) <_ ( 2 x. 1 ) ) |
| 169 |
160 168
|
eqbrtrid |
|- ( s e. ( A (,) B ) -> ( ( abs ` 2 ) x. ( abs ` ( sin ` ( s / 2 ) ) ) ) <_ ( 2 x. 1 ) ) |
| 170 |
156 169
|
eqbrtrd |
|- ( s e. ( A (,) B ) -> ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) <_ ( 2 x. 1 ) ) |
| 171 |
170
|
adantl |
|- ( ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) <_ ( 2 x. 1 ) ) |
| 172 |
|
abscosbd |
|- ( ( s / 2 ) e. RR -> ( abs ` ( cos ` ( s / 2 ) ) ) <_ 1 ) |
| 173 |
104 165 172
|
3syl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( abs ` ( cos ` ( s / 2 ) ) ) <_ 1 ) |
| 174 |
173
|
3ad2antl1 |
|- ( ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> ( abs ` ( cos ` ( s / 2 ) ) ) <_ 1 ) |
| 175 |
89
|
abscld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( abs ` ( ( F ` ( X + s ) ) - C ) ) e. RR ) |
| 176 |
92
|
abscld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( abs ` ( F ` ( X + s ) ) ) e. RR ) |
| 177 |
116
|
abscld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( abs ` C ) e. RR ) |
| 178 |
176 177
|
readdcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( abs ` ( F ` ( X + s ) ) ) + ( abs ` C ) ) e. RR ) |
| 179 |
9
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> D e. RR ) |
| 180 |
179 177
|
readdcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( D + ( abs ` C ) ) e. RR ) |
| 181 |
92 116
|
abs2dif2d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( abs ` ( ( F ` ( X + s ) ) - C ) ) <_ ( ( abs ` ( F ` ( X + s ) ) ) + ( abs ` C ) ) ) |
| 182 |
|
fveq2 |
|- ( t = ( X + s ) -> ( F ` t ) = ( F ` ( X + s ) ) ) |
| 183 |
182
|
fveq2d |
|- ( t = ( X + s ) -> ( abs ` ( F ` t ) ) = ( abs ` ( F ` ( X + s ) ) ) ) |
| 184 |
183
|
breq1d |
|- ( t = ( X + s ) -> ( ( abs ` ( F ` t ) ) <_ D <-> ( abs ` ( F ` ( X + s ) ) ) <_ D ) ) |
| 185 |
148 184
|
imbi12d |
|- ( t = ( X + s ) -> ( ( ( ph /\ t e. ( ( X + A ) (,) ( X + B ) ) ) -> ( abs ` ( F ` t ) ) <_ D ) <-> ( ( ph /\ ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) -> ( abs ` ( F ` ( X + s ) ) ) <_ D ) ) ) |
| 186 |
185 10
|
vtoclg |
|- ( ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) -> ( ( ph /\ ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) -> ( abs ` ( F ` ( X + s ) ) ) <_ D ) ) |
| 187 |
112 146 186
|
sylc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( abs ` ( F ` ( X + s ) ) ) <_ D ) |
| 188 |
176 179 177 187
|
leadd1dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( abs ` ( F ` ( X + s ) ) ) + ( abs ` C ) ) <_ ( D + ( abs ` C ) ) ) |
| 189 |
175 178 180 181 188
|
letrd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( abs ` ( ( F ` ( X + s ) ) - C ) ) <_ ( D + ( abs ` C ) ) ) |
| 190 |
189
|
3ad2antl1 |
|- ( ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> ( abs ` ( ( F ` ( X + s ) ) - C ) ) <_ ( D + ( abs ` C ) ) ) |
| 191 |
19
|
simpri |
|- ( RR _D ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s e. ( A (,) B ) |-> ( cos ` ( s / 2 ) ) ) |
| 192 |
191
|
a1i |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> ( RR _D ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s e. ( A (,) B ) |-> ( cos ` ( s / 2 ) ) ) ) |
| 193 |
133
|
coscld |
|- ( s e. ( A (,) B ) -> ( cos ` ( s / 2 ) ) e. CC ) |
| 194 |
193
|
adantl |
|- ( ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> ( cos ` ( s / 2 ) ) e. CC ) |
| 195 |
|
simp2 |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> c e. RR+ ) |
| 196 |
|
oveq1 |
|- ( t = s -> ( t / 2 ) = ( s / 2 ) ) |
| 197 |
196
|
fveq2d |
|- ( t = s -> ( sin ` ( t / 2 ) ) = ( sin ` ( s / 2 ) ) ) |
| 198 |
197
|
oveq2d |
|- ( t = s -> ( 2 x. ( sin ` ( t / 2 ) ) ) = ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
| 199 |
198
|
fveq2d |
|- ( t = s -> ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) = ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 200 |
199
|
breq2d |
|- ( t = s -> ( c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) <-> c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 201 |
200
|
cbvralvw |
|- ( A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) <-> A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 202 |
|
nfv |
|- F/ s ph |
| 203 |
|
nfra1 |
|- F/ s A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
| 204 |
202 203
|
nfan |
|- F/ s ( ph /\ A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 205 |
|
simplr |
|- ( ( ( ph /\ A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 206 |
15 104
|
sselid |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( A [,] B ) ) |
| 207 |
206
|
adantlr |
|- ( ( ( ph /\ A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> s e. ( A [,] B ) ) |
| 208 |
|
rspa |
|- ( ( A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) /\ s e. ( A [,] B ) ) -> c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 209 |
205 207 208
|
syl2anc |
|- ( ( ( ph /\ A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) /\ s e. ( A (,) B ) ) -> c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 210 |
209
|
ex |
|- ( ( ph /\ A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) -> ( s e. ( A (,) B ) -> c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 211 |
204 210
|
ralrimi |
|- ( ( ph /\ A. s e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) -> A. s e. ( A (,) B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 212 |
201 211
|
sylan2b |
|- ( ( ph /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> A. s e. ( A (,) B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 213 |
212
|
3adant2 |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> A. s e. ( A (,) B ) c <_ ( abs ` ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 214 |
|
eqid |
|- ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) = ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 215 |
80 90 129 130 136 137 140 141 144 155 171 174 190 192 194 195 213 214
|
dvdivbd |
|- ( ( ph /\ c e. RR+ /\ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) ) -> E. b e. RR A. s e. ( A (,) B ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b ) |
| 216 |
215
|
rexlimdv3a |
|- ( ph -> ( E. c e. RR+ A. t e. ( A [,] B ) c <_ ( abs ` ( 2 x. ( sin ` ( t / 2 ) ) ) ) -> E. b e. RR A. s e. ( A (,) B ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b ) ) |
| 217 |
78 216
|
mpd |
|- ( ph -> E. b e. RR A. s e. ( A (,) B ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b ) |
| 218 |
|
nfcv |
|- F/_ s RR |
| 219 |
|
nfcv |
|- F/_ s _D |
| 220 |
|
nfmpt1 |
|- F/_ s ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
| 221 |
14 220
|
nfcxfr |
|- F/_ s O |
| 222 |
218 219 221
|
nfov |
|- F/_ s ( RR _D O ) |
| 223 |
222
|
nfdm |
|- F/_ s dom ( RR _D O ) |
| 224 |
|
nfcv |
|- F/_ s ( A (,) B ) |
| 225 |
223 224
|
raleqf |
|- ( dom ( RR _D O ) = ( A (,) B ) -> ( A. s e. dom ( RR _D O ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b <-> A. s e. ( A (,) B ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b ) ) |
| 226 |
22 225
|
syl |
|- ( ph -> ( A. s e. dom ( RR _D O ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b <-> A. s e. ( A (,) B ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b ) ) |
| 227 |
226
|
rexbidv |
|- ( ph -> ( E. b e. RR A. s e. dom ( RR _D O ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b <-> E. b e. RR A. s e. ( A (,) B ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b ) ) |
| 228 |
217 227
|
mpbird |
|- ( ph -> E. b e. RR A. s e. dom ( RR _D O ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b ) |
| 229 |
14
|
a1i |
|- ( ph -> O = ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
| 230 |
229
|
oveq2d |
|- ( ph -> ( RR _D O ) = ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
| 231 |
230
|
fveq1d |
|- ( ph -> ( ( RR _D O ) ` s ) = ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) |
| 232 |
231
|
fveq2d |
|- ( ph -> ( abs ` ( ( RR _D O ) ` s ) ) = ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) ) |
| 233 |
232
|
breq1d |
|- ( ph -> ( ( abs ` ( ( RR _D O ) ` s ) ) <_ b <-> ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b ) ) |
| 234 |
233
|
rexralbidv |
|- ( ph -> ( E. b e. RR A. s e. dom ( RR _D O ) ( abs ` ( ( RR _D O ) ` s ) ) <_ b <-> E. b e. RR A. s e. dom ( RR _D O ) ( abs ` ( ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ` s ) ) <_ b ) ) |
| 235 |
228 234
|
mpbird |
|- ( ph -> E. b e. RR A. s e. dom ( RR _D O ) ( abs ` ( ( RR _D O ) ` s ) ) <_ b ) |
| 236 |
22 235
|
jca |
|- ( ph -> ( dom ( RR _D O ) = ( A (,) B ) /\ E. b e. RR A. s e. dom ( RR _D O ) ( abs ` ( ( RR _D O ) ` s ) ) <_ b ) ) |