| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isercoll.z |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
isercoll.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
isercoll.g |
|- ( ph -> G : NN --> Z ) |
| 4 |
|
isercoll.i |
|- ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
| 5 |
|
isercoll.0 |
|- ( ( ph /\ n e. ( Z \ ran G ) ) -> ( F ` n ) = 0 ) |
| 6 |
|
isercoll.f |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. CC ) |
| 7 |
|
isercoll.h |
|- ( ( ph /\ k e. NN ) -> ( H ` k ) = ( F ` ( G ` k ) ) ) |
| 8 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
| 9 |
1 8
|
eqsstri |
|- Z C_ ZZ |
| 10 |
3
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. Z ) |
| 11 |
9 10
|
sselid |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. ZZ ) |
| 12 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
| 13 |
12
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> n e. ZZ ) |
| 14 |
|
fzfid |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( M ... m ) e. Fin ) |
| 15 |
|
ffun |
|- ( G : NN --> Z -> Fun G ) |
| 16 |
|
funimacnv |
|- ( Fun G -> ( G " ( `' G " ( M ... m ) ) ) = ( ( M ... m ) i^i ran G ) ) |
| 17 |
3 15 16
|
3syl |
|- ( ph -> ( G " ( `' G " ( M ... m ) ) ) = ( ( M ... m ) i^i ran G ) ) |
| 18 |
|
inss1 |
|- ( ( M ... m ) i^i ran G ) C_ ( M ... m ) |
| 19 |
17 18
|
eqsstrdi |
|- ( ph -> ( G " ( `' G " ( M ... m ) ) ) C_ ( M ... m ) ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( `' G " ( M ... m ) ) ) C_ ( M ... m ) ) |
| 21 |
14 20
|
ssfid |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( `' G " ( M ... m ) ) ) e. Fin ) |
| 22 |
|
hashcl |
|- ( ( G " ( `' G " ( M ... m ) ) ) e. Fin -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. NN0 ) |
| 23 |
|
nn0z |
|- ( ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. NN0 -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ZZ ) |
| 24 |
21 22 23
|
3syl |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ZZ ) |
| 25 |
|
ssid |
|- NN C_ NN |
| 26 |
1 2 3 4
|
isercolllem1 |
|- ( ( ph /\ NN C_ NN ) -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) |
| 27 |
25 26
|
mpan2 |
|- ( ph -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) |
| 28 |
|
ffn |
|- ( G : NN --> Z -> G Fn NN ) |
| 29 |
|
fnresdm |
|- ( G Fn NN -> ( G |` NN ) = G ) |
| 30 |
|
isoeq1 |
|- ( ( G |` NN ) = G -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) |
| 31 |
3 28 29 30
|
4syl |
|- ( ph -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) |
| 32 |
27 31
|
mpbid |
|- ( ph -> G Isom < , < ( NN , ( G " NN ) ) ) |
| 33 |
|
isof1o |
|- ( G Isom < , < ( NN , ( G " NN ) ) -> G : NN -1-1-onto-> ( G " NN ) ) |
| 34 |
|
f1ocnv |
|- ( G : NN -1-1-onto-> ( G " NN ) -> `' G : ( G " NN ) -1-1-onto-> NN ) |
| 35 |
|
f1ofun |
|- ( `' G : ( G " NN ) -1-1-onto-> NN -> Fun `' G ) |
| 36 |
32 33 34 35
|
4syl |
|- ( ph -> Fun `' G ) |
| 37 |
|
df-f1 |
|- ( G : NN -1-1-> Z <-> ( G : NN --> Z /\ Fun `' G ) ) |
| 38 |
3 36 37
|
sylanbrc |
|- ( ph -> G : NN -1-1-> Z ) |
| 39 |
38
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> G : NN -1-1-> Z ) |
| 40 |
|
fz1ssnn |
|- ( 1 ... n ) C_ NN |
| 41 |
|
ovex |
|- ( 1 ... n ) e. _V |
| 42 |
41
|
f1imaen |
|- ( ( G : NN -1-1-> Z /\ ( 1 ... n ) C_ NN ) -> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) |
| 43 |
39 40 42
|
sylancl |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) |
| 44 |
|
fzfid |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( 1 ... n ) e. Fin ) |
| 45 |
|
enfii |
|- ( ( ( 1 ... n ) e. Fin /\ ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) -> ( G " ( 1 ... n ) ) e. Fin ) |
| 46 |
44 43 45
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) e. Fin ) |
| 47 |
|
hashen |
|- ( ( ( G " ( 1 ... n ) ) e. Fin /\ ( 1 ... n ) e. Fin ) -> ( ( # ` ( G " ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) <-> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) ) |
| 48 |
46 44 47
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( ( # ` ( G " ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) <-> ( G " ( 1 ... n ) ) ~~ ( 1 ... n ) ) ) |
| 49 |
43 48
|
mpbird |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( 1 ... n ) ) ) = ( # ` ( 1 ... n ) ) ) |
| 50 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 51 |
50
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> n e. NN0 ) |
| 52 |
|
hashfz1 |
|- ( n e. NN0 -> ( # ` ( 1 ... n ) ) = n ) |
| 53 |
51 52
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( 1 ... n ) ) = n ) |
| 54 |
49 53
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( 1 ... n ) ) ) = n ) |
| 55 |
|
elfznn |
|- ( y e. ( 1 ... n ) -> y e. NN ) |
| 56 |
55
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y e. NN ) |
| 57 |
|
zssre |
|- ZZ C_ RR |
| 58 |
9 57
|
sstri |
|- Z C_ RR |
| 59 |
3
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> G : NN --> Z ) |
| 60 |
|
ffvelcdm |
|- ( ( G : NN --> Z /\ y e. NN ) -> ( G ` y ) e. Z ) |
| 61 |
59 55 60
|
syl2an |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. Z ) |
| 62 |
58 61
|
sselid |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. RR ) |
| 63 |
10
|
ad2antrr |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` n ) e. Z ) |
| 64 |
58 63
|
sselid |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` n ) e. RR ) |
| 65 |
|
eluzelz |
|- ( m e. ( ZZ>= ` ( G ` n ) ) -> m e. ZZ ) |
| 66 |
65
|
ad2antlr |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> m e. ZZ ) |
| 67 |
66
|
zred |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> m e. RR ) |
| 68 |
|
elfzle2 |
|- ( y e. ( 1 ... n ) -> y <_ n ) |
| 69 |
68
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y <_ n ) |
| 70 |
32
|
ad3antrrr |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> G Isom < , < ( NN , ( G " NN ) ) ) |
| 71 |
|
simpllr |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> n e. NN ) |
| 72 |
|
isorel |
|- ( ( G Isom < , < ( NN , ( G " NN ) ) /\ ( n e. NN /\ y e. NN ) ) -> ( n < y <-> ( G ` n ) < ( G ` y ) ) ) |
| 73 |
70 71 56 72
|
syl12anc |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( n < y <-> ( G ` n ) < ( G ` y ) ) ) |
| 74 |
73
|
notbid |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( -. n < y <-> -. ( G ` n ) < ( G ` y ) ) ) |
| 75 |
56
|
nnred |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y e. RR ) |
| 76 |
71
|
nnred |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> n e. RR ) |
| 77 |
75 76
|
lenltd |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( y <_ n <-> -. n < y ) ) |
| 78 |
62 64
|
lenltd |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( ( G ` y ) <_ ( G ` n ) <-> -. ( G ` n ) < ( G ` y ) ) ) |
| 79 |
74 77 78
|
3bitr4d |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( y <_ n <-> ( G ` y ) <_ ( G ` n ) ) ) |
| 80 |
69 79
|
mpbid |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) <_ ( G ` n ) ) |
| 81 |
|
eluzle |
|- ( m e. ( ZZ>= ` ( G ` n ) ) -> ( G ` n ) <_ m ) |
| 82 |
81
|
ad2antlr |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` n ) <_ m ) |
| 83 |
62 64 67 80 82
|
letrd |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) <_ m ) |
| 84 |
61 1
|
eleqtrdi |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. ( ZZ>= ` M ) ) |
| 85 |
|
elfz5 |
|- ( ( ( G ` y ) e. ( ZZ>= ` M ) /\ m e. ZZ ) -> ( ( G ` y ) e. ( M ... m ) <-> ( G ` y ) <_ m ) ) |
| 86 |
84 66 85
|
syl2anc |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( ( G ` y ) e. ( M ... m ) <-> ( G ` y ) <_ m ) ) |
| 87 |
83 86
|
mpbird |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( G ` y ) e. ( M ... m ) ) |
| 88 |
59
|
ffnd |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> G Fn NN ) |
| 89 |
88
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> G Fn NN ) |
| 90 |
|
elpreima |
|- ( G Fn NN -> ( y e. ( `' G " ( M ... m ) ) <-> ( y e. NN /\ ( G ` y ) e. ( M ... m ) ) ) ) |
| 91 |
89 90
|
syl |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> ( y e. ( `' G " ( M ... m ) ) <-> ( y e. NN /\ ( G ` y ) e. ( M ... m ) ) ) ) |
| 92 |
56 87 91
|
mpbir2and |
|- ( ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) /\ y e. ( 1 ... n ) ) -> y e. ( `' G " ( M ... m ) ) ) |
| 93 |
92
|
ex |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( y e. ( 1 ... n ) -> y e. ( `' G " ( M ... m ) ) ) ) |
| 94 |
93
|
ssrdv |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( 1 ... n ) C_ ( `' G " ( M ... m ) ) ) |
| 95 |
|
imass2 |
|- ( ( 1 ... n ) C_ ( `' G " ( M ... m ) ) -> ( G " ( 1 ... n ) ) C_ ( G " ( `' G " ( M ... m ) ) ) ) |
| 96 |
94 95
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) C_ ( G " ( `' G " ( M ... m ) ) ) ) |
| 97 |
|
ssdomg |
|- ( ( G " ( `' G " ( M ... m ) ) ) e. Fin -> ( ( G " ( 1 ... n ) ) C_ ( G " ( `' G " ( M ... m ) ) ) -> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) ) |
| 98 |
21 96 97
|
sylc |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) |
| 99 |
|
hashdom |
|- ( ( ( G " ( 1 ... n ) ) e. Fin /\ ( G " ( `' G " ( M ... m ) ) ) e. Fin ) -> ( ( # ` ( G " ( 1 ... n ) ) ) <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) <-> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) ) |
| 100 |
46 21 99
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( ( # ` ( G " ( 1 ... n ) ) ) <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) <-> ( G " ( 1 ... n ) ) ~<_ ( G " ( `' G " ( M ... m ) ) ) ) ) |
| 101 |
98 100
|
mpbird |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( 1 ... n ) ) ) <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) |
| 102 |
54 101
|
eqbrtrrd |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> n <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) |
| 103 |
|
eluz2 |
|- ( ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ( ZZ>= ` n ) <-> ( n e. ZZ /\ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ZZ /\ n <_ ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) ) |
| 104 |
13 24 102 103
|
syl3anbrc |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ( ZZ>= ` n ) ) |
| 105 |
|
fveq2 |
|- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( seq 1 ( + , H ) ` k ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) ) |
| 106 |
105
|
eleq1d |
|- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( ( seq 1 ( + , H ) ` k ) e. CC <-> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC ) ) |
| 107 |
105
|
fvoveq1d |
|- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) = ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) ) |
| 108 |
107
|
breq1d |
|- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x <-> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) |
| 109 |
106 108
|
anbi12d |
|- ( k = ( # ` ( G " ( `' G " ( M ... m ) ) ) ) -> ( ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 110 |
109
|
rspcv |
|- ( ( # ` ( G " ( `' G " ( M ... m ) ) ) ) e. ( ZZ>= ` n ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 111 |
104 110
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ m e. ( ZZ>= ` ( G ` n ) ) ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 112 |
111
|
ralrimdva |
|- ( ( ph /\ n e. NN ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> A. m e. ( ZZ>= ` ( G ` n ) ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 113 |
|
fveq2 |
|- ( j = ( G ` n ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( G ` n ) ) ) |
| 114 |
113
|
raleqdv |
|- ( j = ( G ` n ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> A. m e. ( ZZ>= ` ( G ` n ) ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 115 |
114
|
rspcev |
|- ( ( ( G ` n ) e. ZZ /\ A. m e. ( ZZ>= ` ( G ` n ) ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) -> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) |
| 116 |
11 112 115
|
syl6an |
|- ( ( ph /\ n e. NN ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 117 |
116
|
rexlimdva |
|- ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 118 |
|
1nn |
|- 1 e. NN |
| 119 |
|
ffvelcdm |
|- ( ( G : NN --> Z /\ 1 e. NN ) -> ( G ` 1 ) e. Z ) |
| 120 |
3 118 119
|
sylancl |
|- ( ph -> ( G ` 1 ) e. Z ) |
| 121 |
120 1
|
eleqtrdi |
|- ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) |
| 122 |
|
eluzelz |
|- ( ( G ` 1 ) e. ( ZZ>= ` M ) -> ( G ` 1 ) e. ZZ ) |
| 123 |
|
eqid |
|- ( ZZ>= ` ( G ` 1 ) ) = ( ZZ>= ` ( G ` 1 ) ) |
| 124 |
123
|
rexuz3 |
|- ( ( G ` 1 ) e. ZZ -> ( E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 125 |
121 122 124
|
3syl |
|- ( ph -> ( E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> E. j e. ZZ A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 126 |
117 125
|
sylibrd |
|- ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) -> E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 127 |
|
fzfid |
|- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( M ... j ) e. Fin ) |
| 128 |
|
funimacnv |
|- ( Fun G -> ( G " ( `' G " ( M ... j ) ) ) = ( ( M ... j ) i^i ran G ) ) |
| 129 |
3 15 128
|
3syl |
|- ( ph -> ( G " ( `' G " ( M ... j ) ) ) = ( ( M ... j ) i^i ran G ) ) |
| 130 |
|
inss1 |
|- ( ( M ... j ) i^i ran G ) C_ ( M ... j ) |
| 131 |
129 130
|
eqsstrdi |
|- ( ph -> ( G " ( `' G " ( M ... j ) ) ) C_ ( M ... j ) ) |
| 132 |
131
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... j ) ) ) C_ ( M ... j ) ) |
| 133 |
127 132
|
ssfid |
|- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... j ) ) ) e. Fin ) |
| 134 |
|
hashcl |
|- ( ( G " ( `' G " ( M ... j ) ) ) e. Fin -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 ) |
| 135 |
|
nn0p1nn |
|- ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN ) |
| 136 |
133 134 135
|
3syl |
|- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN ) |
| 137 |
|
eluzle |
|- ( k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) |
| 138 |
137
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) |
| 139 |
133
|
adantr |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( `' G " ( M ... j ) ) ) e. Fin ) |
| 140 |
|
nn0z |
|- ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. ZZ ) |
| 141 |
139 134 140
|
3syl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. ZZ ) |
| 142 |
|
eluzelz |
|- ( k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) -> k e. ZZ ) |
| 143 |
142
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. ZZ ) |
| 144 |
|
zltp1le |
|- ( ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. ZZ /\ k e. ZZ ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k <-> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) ) |
| 145 |
141 143 144
|
syl2anc |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k <-> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) <_ k ) ) |
| 146 |
138 145
|
mpbird |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k ) |
| 147 |
|
nn0re |
|- ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. NN0 -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. RR ) |
| 148 |
133 134 147
|
3syl |
|- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. RR ) |
| 149 |
148
|
adantr |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... j ) ) ) ) e. RR ) |
| 150 |
|
eluznn |
|- ( ( ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. NN ) |
| 151 |
136 150
|
sylan |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. NN ) |
| 152 |
151
|
nnred |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> k e. RR ) |
| 153 |
149 152
|
ltnled |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) < k <-> -. k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) |
| 154 |
146 153
|
mpbid |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> -. k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 155 |
|
fzss2 |
|- ( j e. ( ZZ>= ` ( G ` k ) ) -> ( M ... ( G ` k ) ) C_ ( M ... j ) ) |
| 156 |
|
imass2 |
|- ( ( M ... ( G ` k ) ) C_ ( M ... j ) -> ( `' G " ( M ... ( G ` k ) ) ) C_ ( `' G " ( M ... j ) ) ) |
| 157 |
|
imass2 |
|- ( ( `' G " ( M ... ( G ` k ) ) ) C_ ( `' G " ( M ... j ) ) -> ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) ) |
| 158 |
155 156 157
|
3syl |
|- ( j e. ( ZZ>= ` ( G ` k ) ) -> ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) ) |
| 159 |
|
ssdomg |
|- ( ( G " ( `' G " ( M ... j ) ) ) e. Fin -> ( ( G " ( 1 ... k ) ) C_ ( G " ( `' G " ( M ... j ) ) ) -> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 160 |
139 159
|
syl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( G " ( 1 ... k ) ) C_ ( G " ( `' G " ( M ... j ) ) ) -> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 161 |
3
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> G : NN --> Z ) |
| 162 |
161
|
ffvelcdmda |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. Z ) |
| 163 |
162 1
|
eleqtrdi |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. ( ZZ>= ` M ) ) |
| 164 |
161 151
|
ffvelcdmd |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G ` k ) e. Z ) |
| 165 |
9 164
|
sselid |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G ` k ) e. ZZ ) |
| 166 |
165
|
adantr |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G ` k ) e. ZZ ) |
| 167 |
|
elfz5 |
|- ( ( ( G ` x ) e. ( ZZ>= ` M ) /\ ( G ` k ) e. ZZ ) -> ( ( G ` x ) e. ( M ... ( G ` k ) ) <-> ( G ` x ) <_ ( G ` k ) ) ) |
| 168 |
163 166 167
|
syl2anc |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) e. ( M ... ( G ` k ) ) <-> ( G ` x ) <_ ( G ` k ) ) ) |
| 169 |
32
|
ad3antrrr |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> G Isom < , < ( NN , ( G " NN ) ) ) |
| 170 |
|
nnssre |
|- NN C_ RR |
| 171 |
|
ressxr |
|- RR C_ RR* |
| 172 |
170 171
|
sstri |
|- NN C_ RR* |
| 173 |
172
|
a1i |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> NN C_ RR* ) |
| 174 |
|
imassrn |
|- ( G " NN ) C_ ran G |
| 175 |
161
|
adantr |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> G : NN --> Z ) |
| 176 |
175
|
frnd |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ran G C_ Z ) |
| 177 |
176 58
|
sstrdi |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ran G C_ RR ) |
| 178 |
174 177
|
sstrid |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR ) |
| 179 |
178 171
|
sstrdi |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR* ) |
| 180 |
|
simpr |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> x e. NN ) |
| 181 |
151
|
adantr |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> k e. NN ) |
| 182 |
|
leisorel |
|- ( ( G Isom < , < ( NN , ( G " NN ) ) /\ ( NN C_ RR* /\ ( G " NN ) C_ RR* ) /\ ( x e. NN /\ k e. NN ) ) -> ( x <_ k <-> ( G ` x ) <_ ( G ` k ) ) ) |
| 183 |
169 173 179 180 181 182
|
syl122anc |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( x <_ k <-> ( G ` x ) <_ ( G ` k ) ) ) |
| 184 |
168 183
|
bitr4d |
|- ( ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) e. ( M ... ( G ` k ) ) <-> x <_ k ) ) |
| 185 |
184
|
pm5.32da |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( x e. NN /\ ( G ` x ) e. ( M ... ( G ` k ) ) ) <-> ( x e. NN /\ x <_ k ) ) ) |
| 186 |
|
elpreima |
|- ( G Fn NN -> ( x e. ( `' G " ( M ... ( G ` k ) ) ) <-> ( x e. NN /\ ( G ` x ) e. ( M ... ( G ` k ) ) ) ) ) |
| 187 |
161 28 186
|
3syl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( x e. ( `' G " ( M ... ( G ` k ) ) ) <-> ( x e. NN /\ ( G ` x ) e. ( M ... ( G ` k ) ) ) ) ) |
| 188 |
|
fznn |
|- ( k e. ZZ -> ( x e. ( 1 ... k ) <-> ( x e. NN /\ x <_ k ) ) ) |
| 189 |
143 188
|
syl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( x e. ( 1 ... k ) <-> ( x e. NN /\ x <_ k ) ) ) |
| 190 |
185 187 189
|
3bitr4d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( x e. ( `' G " ( M ... ( G ` k ) ) ) <-> x e. ( 1 ... k ) ) ) |
| 191 |
190
|
eqrdv |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( `' G " ( M ... ( G ` k ) ) ) = ( 1 ... k ) ) |
| 192 |
191
|
imaeq2d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( `' G " ( M ... ( G ` k ) ) ) ) = ( G " ( 1 ... k ) ) ) |
| 193 |
192
|
sseq1d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) <-> ( G " ( 1 ... k ) ) C_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 194 |
38
|
ad2antrr |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> G : NN -1-1-> Z ) |
| 195 |
|
fz1ssnn |
|- ( 1 ... k ) C_ NN |
| 196 |
|
ovex |
|- ( 1 ... k ) e. _V |
| 197 |
196
|
f1imaen |
|- ( ( G : NN -1-1-> Z /\ ( 1 ... k ) C_ NN ) -> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) |
| 198 |
194 195 197
|
sylancl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) |
| 199 |
|
fzfid |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( 1 ... k ) e. Fin ) |
| 200 |
|
enfii |
|- ( ( ( 1 ... k ) e. Fin /\ ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) -> ( G " ( 1 ... k ) ) e. Fin ) |
| 201 |
199 198 200
|
syl2anc |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G " ( 1 ... k ) ) e. Fin ) |
| 202 |
|
hashen |
|- ( ( ( G " ( 1 ... k ) ) e. Fin /\ ( 1 ... k ) e. Fin ) -> ( ( # ` ( G " ( 1 ... k ) ) ) = ( # ` ( 1 ... k ) ) <-> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) ) |
| 203 |
201 199 202
|
syl2anc |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( 1 ... k ) ) ) = ( # ` ( 1 ... k ) ) <-> ( G " ( 1 ... k ) ) ~~ ( 1 ... k ) ) ) |
| 204 |
198 203
|
mpbird |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( 1 ... k ) ) ) = ( # ` ( 1 ... k ) ) ) |
| 205 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 206 |
|
hashfz1 |
|- ( k e. NN0 -> ( # ` ( 1 ... k ) ) = k ) |
| 207 |
151 205 206
|
3syl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( 1 ... k ) ) = k ) |
| 208 |
204 207
|
eqtrd |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( 1 ... k ) ) ) = k ) |
| 209 |
208
|
breq1d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( 1 ... k ) ) ) <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) |
| 210 |
|
hashdom |
|- ( ( ( G " ( 1 ... k ) ) e. Fin /\ ( G " ( `' G " ( M ... j ) ) ) e. Fin ) -> ( ( # ` ( G " ( 1 ... k ) ) ) <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 211 |
201 139 210
|
syl2anc |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( # ` ( G " ( 1 ... k ) ) ) <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 212 |
209 211
|
bitr3d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) <-> ( G " ( 1 ... k ) ) ~<_ ( G " ( `' G " ( M ... j ) ) ) ) ) |
| 213 |
160 193 212
|
3imtr4d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( G " ( `' G " ( M ... ( G ` k ) ) ) ) C_ ( G " ( `' G " ( M ... j ) ) ) -> k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) |
| 214 |
158 213
|
syl5 |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( j e. ( ZZ>= ` ( G ` k ) ) -> k <_ ( # ` ( G " ( `' G " ( M ... j ) ) ) ) ) ) |
| 215 |
154 214
|
mtod |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> -. j e. ( ZZ>= ` ( G ` k ) ) ) |
| 216 |
|
eluzelz |
|- ( j e. ( ZZ>= ` ( G ` 1 ) ) -> j e. ZZ ) |
| 217 |
216
|
ad2antlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> j e. ZZ ) |
| 218 |
|
uztric |
|- ( ( ( G ` k ) e. ZZ /\ j e. ZZ ) -> ( j e. ( ZZ>= ` ( G ` k ) ) \/ ( G ` k ) e. ( ZZ>= ` j ) ) ) |
| 219 |
165 217 218
|
syl2anc |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( j e. ( ZZ>= ` ( G ` k ) ) \/ ( G ` k ) e. ( ZZ>= ` j ) ) ) |
| 220 |
219
|
ord |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( -. j e. ( ZZ>= ` ( G ` k ) ) -> ( G ` k ) e. ( ZZ>= ` j ) ) ) |
| 221 |
215 220
|
mpd |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( G ` k ) e. ( ZZ>= ` j ) ) |
| 222 |
|
oveq2 |
|- ( m = ( G ` k ) -> ( M ... m ) = ( M ... ( G ` k ) ) ) |
| 223 |
222
|
imaeq2d |
|- ( m = ( G ` k ) -> ( `' G " ( M ... m ) ) = ( `' G " ( M ... ( G ` k ) ) ) ) |
| 224 |
223
|
imaeq2d |
|- ( m = ( G ` k ) -> ( G " ( `' G " ( M ... m ) ) ) = ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) |
| 225 |
224
|
fveq2d |
|- ( m = ( G ` k ) -> ( # ` ( G " ( `' G " ( M ... m ) ) ) ) = ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) |
| 226 |
225
|
fveq2d |
|- ( m = ( G ` k ) -> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) ) |
| 227 |
226
|
eleq1d |
|- ( m = ( G ` k ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC <-> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC ) ) |
| 228 |
226
|
fvoveq1d |
|- ( m = ( G ` k ) -> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) = ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) ) |
| 229 |
228
|
breq1d |
|- ( m = ( G ` k ) -> ( ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x <-> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) |
| 230 |
227 229
|
anbi12d |
|- ( m = ( G ` k ) -> ( ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) <-> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) ) |
| 231 |
230
|
rspcv |
|- ( ( G ` k ) e. ( ZZ>= ` j ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) ) |
| 232 |
221 231
|
syl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) ) ) |
| 233 |
192
|
fveq2d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) = ( # ` ( G " ( 1 ... k ) ) ) ) |
| 234 |
233 208
|
eqtrd |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) = k ) |
| 235 |
234
|
fveq2d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) = ( seq 1 ( + , H ) ` k ) ) |
| 236 |
235
|
eleq1d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC <-> ( seq 1 ( + , H ) ` k ) e. CC ) ) |
| 237 |
235
|
fvoveq1d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) = ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) ) |
| 238 |
237
|
breq1d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x <-> ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) |
| 239 |
236 238
|
anbi12d |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... ( G ` k ) ) ) ) ) ) - A ) ) < x ) <-> ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 240 |
232 239
|
sylibd |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) /\ k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 241 |
240
|
ralrimdva |
|- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> A. k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 242 |
|
fveq2 |
|- ( n = ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) -> ( ZZ>= ` n ) = ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ) |
| 243 |
242
|
raleqdv |
|- ( n = ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) -> ( A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> A. k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 244 |
243
|
rspcev |
|- ( ( ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) e. NN /\ A. k e. ( ZZ>= ` ( ( # ` ( G " ( `' G " ( M ... j ) ) ) ) + 1 ) ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) |
| 245 |
136 241 244
|
syl6an |
|- ( ( ph /\ j e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 246 |
245
|
rexlimdva |
|- ( ph -> ( E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) -> E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) |
| 247 |
126 246
|
impbid |
|- ( ph -> ( E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 248 |
247
|
ralbidv |
|- ( ph -> ( A. x e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) <-> A. x e. RR+ E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) |
| 249 |
248
|
anbi2d |
|- ( ph -> ( ( A e. CC /\ A. x e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) <-> ( A e. CC /\ A. x e. RR+ E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) ) |
| 250 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 251 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 252 |
|
seqex |
|- seq 1 ( + , H ) e. _V |
| 253 |
252
|
a1i |
|- ( ph -> seq 1 ( + , H ) e. _V ) |
| 254 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( seq 1 ( + , H ) ` k ) = ( seq 1 ( + , H ) ` k ) ) |
| 255 |
250 251 253 254
|
clim2 |
|- ( ph -> ( seq 1 ( + , H ) ~~> A <-> ( A e. CC /\ A. x e. RR+ E. n e. NN A. k e. ( ZZ>= ` n ) ( ( seq 1 ( + , H ) ` k ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` k ) - A ) ) < x ) ) ) ) |
| 256 |
121 122
|
syl |
|- ( ph -> ( G ` 1 ) e. ZZ ) |
| 257 |
|
seqex |
|- seq M ( + , F ) e. _V |
| 258 |
257
|
a1i |
|- ( ph -> seq M ( + , F ) e. _V ) |
| 259 |
1 2 3 4 5 6 7
|
isercolllem3 |
|- ( ( ph /\ m e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( seq M ( + , F ) ` m ) = ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) ) |
| 260 |
123 256 258 259
|
clim2 |
|- ( ph -> ( seq M ( + , F ) ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. ( ZZ>= ` ( G ` 1 ) ) A. m e. ( ZZ>= ` j ) ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) e. CC /\ ( abs ` ( ( seq 1 ( + , H ) ` ( # ` ( G " ( `' G " ( M ... m ) ) ) ) ) - A ) ) < x ) ) ) ) |
| 261 |
249 255 260
|
3bitr4d |
|- ( ph -> ( seq 1 ( + , H ) ~~> A <-> seq M ( + , F ) ~~> A ) ) |