Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Liouville's approximation theorem
aaliou3lem2
Next ⟩
aaliou3lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
aaliou3lem2
Description:
Lemma for
aaliou3
.
(Contributed by
Stefan O'Rear
, 16-Nov-2014)
Ref
Expression
Hypotheses
aaliou3lem.a
⊢
G
=
c
∈
ℤ
≥
A
⟼
2
−
A
!
1
2
c
−
A
aaliou3lem.b
⊢
F
=
a
∈
ℕ
⟼
2
−
a
!
Assertion
aaliou3lem2
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
F
B
∈
0
G
B
Proof
Step
Hyp
Ref
Expression
1
aaliou3lem.a
⊢
G
=
c
∈
ℤ
≥
A
⟼
2
−
A
!
1
2
c
−
A
2
aaliou3lem.b
⊢
F
=
a
∈
ℕ
⟼
2
−
a
!
3
eluznn
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
B
∈
ℕ
4
fveq2
⊢
a
=
B
→
a
!
=
B
!
5
4
negeqd
⊢
a
=
B
→
−
a
!
=
−
B
!
6
5
oveq2d
⊢
a
=
B
→
2
−
a
!
=
2
−
B
!
7
ovex
⊢
2
−
B
!
∈
V
8
6
2
7
fvmpt
⊢
B
∈
ℕ
→
F
B
=
2
−
B
!
9
3
8
syl
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
F
B
=
2
−
B
!
10
2rp
⊢
2
∈
ℝ
+
11
3
nnnn0d
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
B
∈
ℕ
0
12
11
faccld
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
B
!
∈
ℕ
13
12
nnzd
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
B
!
∈
ℤ
14
13
znegcld
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
−
B
!
∈
ℤ
15
rpexpcl
⊢
2
∈
ℝ
+
∧
−
B
!
∈
ℤ
→
2
−
B
!
∈
ℝ
+
16
10
14
15
sylancr
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
2
−
B
!
∈
ℝ
+
17
9
16
eqeltrd
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
F
B
∈
ℝ
+
18
17
rpred
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
F
B
∈
ℝ
19
17
rpgt0d
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
0
<
F
B
20
fveq2
⊢
b
=
A
→
F
b
=
F
A
21
fveq2
⊢
b
=
A
→
G
b
=
G
A
22
20
21
breq12d
⊢
b
=
A
→
F
b
≤
G
b
↔
F
A
≤
G
A
23
22
imbi2d
⊢
b
=
A
→
A
∈
ℕ
→
F
b
≤
G
b
↔
A
∈
ℕ
→
F
A
≤
G
A
24
fveq2
⊢
b
=
d
→
F
b
=
F
d
25
fveq2
⊢
b
=
d
→
G
b
=
G
d
26
24
25
breq12d
⊢
b
=
d
→
F
b
≤
G
b
↔
F
d
≤
G
d
27
26
imbi2d
⊢
b
=
d
→
A
∈
ℕ
→
F
b
≤
G
b
↔
A
∈
ℕ
→
F
d
≤
G
d
28
fveq2
⊢
b
=
d
+
1
→
F
b
=
F
d
+
1
29
fveq2
⊢
b
=
d
+
1
→
G
b
=
G
d
+
1
30
28
29
breq12d
⊢
b
=
d
+
1
→
F
b
≤
G
b
↔
F
d
+
1
≤
G
d
+
1
31
30
imbi2d
⊢
b
=
d
+
1
→
A
∈
ℕ
→
F
b
≤
G
b
↔
A
∈
ℕ
→
F
d
+
1
≤
G
d
+
1
32
fveq2
⊢
b
=
B
→
F
b
=
F
B
33
fveq2
⊢
b
=
B
→
G
b
=
G
B
34
32
33
breq12d
⊢
b
=
B
→
F
b
≤
G
b
↔
F
B
≤
G
B
35
34
imbi2d
⊢
b
=
B
→
A
∈
ℕ
→
F
b
≤
G
b
↔
A
∈
ℕ
→
F
B
≤
G
B
36
nnnn0
⊢
A
∈
ℕ
→
A
∈
ℕ
0
37
36
faccld
⊢
A
∈
ℕ
→
A
!
∈
ℕ
38
37
nnzd
⊢
A
∈
ℕ
→
A
!
∈
ℤ
39
38
znegcld
⊢
A
∈
ℕ
→
−
A
!
∈
ℤ
40
rpexpcl
⊢
2
∈
ℝ
+
∧
−
A
!
∈
ℤ
→
2
−
A
!
∈
ℝ
+
41
10
39
40
sylancr
⊢
A
∈
ℕ
→
2
−
A
!
∈
ℝ
+
42
41
rpred
⊢
A
∈
ℕ
→
2
−
A
!
∈
ℝ
43
42
leidd
⊢
A
∈
ℕ
→
2
−
A
!
≤
2
−
A
!
44
nncn
⊢
A
∈
ℕ
→
A
∈
ℂ
45
44
subidd
⊢
A
∈
ℕ
→
A
−
A
=
0
46
45
oveq2d
⊢
A
∈
ℕ
→
1
2
A
−
A
=
1
2
0
47
halfcn
⊢
1
2
∈
ℂ
48
exp0
⊢
1
2
∈
ℂ
→
1
2
0
=
1
49
47
48
ax-mp
⊢
1
2
0
=
1
50
46
49
eqtrdi
⊢
A
∈
ℕ
→
1
2
A
−
A
=
1
51
50
oveq2d
⊢
A
∈
ℕ
→
2
−
A
!
1
2
A
−
A
=
2
−
A
!
⋅
1
52
41
rpcnd
⊢
A
∈
ℕ
→
2
−
A
!
∈
ℂ
53
52
mulridd
⊢
A
∈
ℕ
→
2
−
A
!
⋅
1
=
2
−
A
!
54
51
53
eqtrd
⊢
A
∈
ℕ
→
2
−
A
!
1
2
A
−
A
=
2
−
A
!
55
43
54
breqtrrd
⊢
A
∈
ℕ
→
2
−
A
!
≤
2
−
A
!
1
2
A
−
A
56
fveq2
⊢
a
=
A
→
a
!
=
A
!
57
56
negeqd
⊢
a
=
A
→
−
a
!
=
−
A
!
58
57
oveq2d
⊢
a
=
A
→
2
−
a
!
=
2
−
A
!
59
ovex
⊢
2
−
A
!
∈
V
60
58
2
59
fvmpt
⊢
A
∈
ℕ
→
F
A
=
2
−
A
!
61
nnz
⊢
A
∈
ℕ
→
A
∈
ℤ
62
uzid
⊢
A
∈
ℤ
→
A
∈
ℤ
≥
A
63
oveq1
⊢
c
=
A
→
c
−
A
=
A
−
A
64
63
oveq2d
⊢
c
=
A
→
1
2
c
−
A
=
1
2
A
−
A
65
64
oveq2d
⊢
c
=
A
→
2
−
A
!
1
2
c
−
A
=
2
−
A
!
1
2
A
−
A
66
ovex
⊢
2
−
A
!
1
2
A
−
A
∈
V
67
65
1
66
fvmpt
⊢
A
∈
ℤ
≥
A
→
G
A
=
2
−
A
!
1
2
A
−
A
68
61
62
67
3syl
⊢
A
∈
ℕ
→
G
A
=
2
−
A
!
1
2
A
−
A
69
55
60
68
3brtr4d
⊢
A
∈
ℕ
→
F
A
≤
G
A
70
eluznn
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
∈
ℕ
71
70
nnnn0d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
∈
ℕ
0
72
71
faccld
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
!
∈
ℕ
73
72
nnzd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
!
∈
ℤ
74
73
znegcld
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
∈
ℤ
75
rpexpcl
⊢
2
∈
ℝ
+
∧
−
d
!
∈
ℤ
→
2
−
d
!
∈
ℝ
+
76
10
74
75
sylancr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
∈
ℝ
+
77
76
rpred
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
∈
ℝ
78
76
rpge0d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
0
≤
2
−
d
!
79
simpl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
A
∈
ℕ
80
79
nnnn0d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
A
∈
ℕ
0
81
80
faccld
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
A
!
∈
ℕ
82
81
nnzd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
A
!
∈
ℤ
83
82
znegcld
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
A
!
∈
ℤ
84
10
83
40
sylancr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
A
!
∈
ℝ
+
85
halfre
⊢
1
2
∈
ℝ
86
halfgt0
⊢
0
<
1
2
87
85
86
elrpii
⊢
1
2
∈
ℝ
+
88
eluzelz
⊢
d
∈
ℤ
≥
A
→
d
∈
ℤ
89
zsubcl
⊢
d
∈
ℤ
∧
A
∈
ℤ
→
d
−
A
∈
ℤ
90
88
61
89
syl2anr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
−
A
∈
ℤ
91
rpexpcl
⊢
1
2
∈
ℝ
+
∧
d
−
A
∈
ℤ
→
1
2
d
−
A
∈
ℝ
+
92
87
90
91
sylancr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
2
d
−
A
∈
ℝ
+
93
84
92
rpmulcld
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
A
!
1
2
d
−
A
∈
ℝ
+
94
93
rpred
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
A
!
1
2
d
−
A
∈
ℝ
95
77
78
94
jca31
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
∈
ℝ
∧
0
≤
2
−
d
!
∧
2
−
A
!
1
2
d
−
A
∈
ℝ
96
95
adantr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
∧
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
→
2
−
d
!
∈
ℝ
∧
0
≤
2
−
d
!
∧
2
−
A
!
1
2
d
−
A
∈
ℝ
97
88
adantl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
∈
ℤ
98
74
97
zmulcld
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
d
∈
ℤ
99
rpexpcl
⊢
2
∈
ℝ
+
∧
−
d
!
d
∈
ℤ
→
2
−
d
!
d
∈
ℝ
+
100
10
98
99
sylancr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
d
∈
ℝ
+
101
100
rpred
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
d
∈
ℝ
102
100
rpge0d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
0
≤
2
−
d
!
d
103
85
a1i
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
2
∈
ℝ
104
101
102
103
jca31
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
d
∈
ℝ
∧
0
≤
2
−
d
!
d
∧
1
2
∈
ℝ
105
104
adantr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
∧
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
→
2
−
d
!
d
∈
ℝ
∧
0
≤
2
−
d
!
d
∧
1
2
∈
ℝ
106
simpr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
∧
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
→
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
107
2re
⊢
2
∈
ℝ
108
1le2
⊢
1
≤
2
109
72
nncnd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
!
∈
ℂ
110
97
zcnd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
∈
ℂ
111
109
110
mulneg1d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
d
=
−
d
!
d
112
72
70
nnmulcld
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
!
d
∈
ℕ
113
112
nnge1d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
≤
d
!
d
114
1re
⊢
1
∈
ℝ
115
112
nnred
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
!
d
∈
ℝ
116
leneg
⊢
1
∈
ℝ
∧
d
!
d
∈
ℝ
→
1
≤
d
!
d
↔
−
d
!
d
≤
−
1
117
114
115
116
sylancr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
≤
d
!
d
↔
−
d
!
d
≤
−
1
118
113
117
mpbid
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
d
≤
−
1
119
111
118
eqbrtrd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
d
≤
−
1
120
neg1z
⊢
−
1
∈
ℤ
121
eluz
⊢
−
d
!
d
∈
ℤ
∧
−
1
∈
ℤ
→
−
1
∈
ℤ
≥
−
d
!
d
↔
−
d
!
d
≤
−
1
122
98
120
121
sylancl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
1
∈
ℤ
≥
−
d
!
d
↔
−
d
!
d
≤
−
1
123
119
122
mpbird
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
1
∈
ℤ
≥
−
d
!
d
124
leexp2a
⊢
2
∈
ℝ
∧
1
≤
2
∧
−
1
∈
ℤ
≥
−
d
!
d
→
2
−
d
!
d
≤
2
−
1
125
107
108
123
124
mp3an12i
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
d
≤
2
−
1
126
2cn
⊢
2
∈
ℂ
127
expn1
⊢
2
∈
ℂ
→
2
−
1
=
1
2
128
126
127
ax-mp
⊢
2
−
1
=
1
2
129
125
128
breqtrdi
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
d
≤
1
2
130
129
adantr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
∧
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
→
2
−
d
!
d
≤
1
2
131
lemul12a
⊢
2
−
d
!
∈
ℝ
∧
0
≤
2
−
d
!
∧
2
−
A
!
1
2
d
−
A
∈
ℝ
∧
2
−
d
!
d
∈
ℝ
∧
0
≤
2
−
d
!
d
∧
1
2
∈
ℝ
→
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
∧
2
−
d
!
d
≤
1
2
→
2
−
d
!
2
−
d
!
d
≤
2
−
A
!
1
2
d
−
A
1
2
132
131
3impia
⊢
2
−
d
!
∈
ℝ
∧
0
≤
2
−
d
!
∧
2
−
A
!
1
2
d
−
A
∈
ℝ
∧
2
−
d
!
d
∈
ℝ
∧
0
≤
2
−
d
!
d
∧
1
2
∈
ℝ
∧
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
∧
2
−
d
!
d
≤
1
2
→
2
−
d
!
2
−
d
!
d
≤
2
−
A
!
1
2
d
−
A
1
2
133
96
105
106
130
132
syl112anc
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
∧
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
→
2
−
d
!
2
−
d
!
d
≤
2
−
A
!
1
2
d
−
A
1
2
134
133
ex
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
→
2
−
d
!
2
−
d
!
d
≤
2
−
A
!
1
2
d
−
A
1
2
135
facp1
⊢
d
∈
ℕ
0
→
d
+
1
!
=
d
!
d
+
1
136
71
135
syl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
+
1
!
=
d
!
d
+
1
137
136
negeqd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
+
1
!
=
−
d
!
d
+
1
138
ax-1cn
⊢
1
∈
ℂ
139
addcom
⊢
d
∈
ℂ
∧
1
∈
ℂ
→
d
+
1
=
1
+
d
140
110
138
139
sylancl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
+
1
=
1
+
d
141
140
oveq2d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
d
+
1
=
−
d
!
1
+
d
142
peano2cn
⊢
d
∈
ℂ
→
d
+
1
∈
ℂ
143
110
142
syl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
+
1
∈
ℂ
144
109
143
mulneg1d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
d
+
1
=
−
d
!
d
+
1
145
74
zcnd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
∈
ℂ
146
1cnd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
∈
ℂ
147
145
146
110
adddid
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
1
+
d
=
−
d
!
⋅
1
+
−
d
!
d
148
145
mulridd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
⋅
1
=
−
d
!
149
148
oveq1d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
⋅
1
+
−
d
!
d
=
-
d
!
+
−
d
!
d
150
147
149
eqtrd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
1
+
d
=
-
d
!
+
−
d
!
d
151
141
144
150
3eqtr3d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
!
d
+
1
=
-
d
!
+
−
d
!
d
152
137
151
eqtrd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
−
d
+
1
!
=
-
d
!
+
−
d
!
d
153
152
oveq2d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
+
1
!
=
2
-
d
!
+
−
d
!
d
154
2cnne0
⊢
2
∈
ℂ
∧
2
≠
0
155
expaddz
⊢
2
∈
ℂ
∧
2
≠
0
∧
−
d
!
∈
ℤ
∧
−
d
!
d
∈
ℤ
→
2
-
d
!
+
−
d
!
d
=
2
−
d
!
2
−
d
!
d
156
154
155
mpan
⊢
−
d
!
∈
ℤ
∧
−
d
!
d
∈
ℤ
→
2
-
d
!
+
−
d
!
d
=
2
−
d
!
2
−
d
!
d
157
74
98
156
syl2anc
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
-
d
!
+
−
d
!
d
=
2
−
d
!
2
−
d
!
d
158
153
157
eqtrd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
+
1
!
=
2
−
d
!
2
−
d
!
d
159
44
adantr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
A
∈
ℂ
160
110
146
159
addsubd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
+
1
-
A
=
d
-
A
+
1
161
160
oveq2d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
2
d
+
1
-
A
=
1
2
d
-
A
+
1
162
uznn0sub
⊢
d
∈
ℤ
≥
A
→
d
−
A
∈
ℕ
0
163
162
adantl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
−
A
∈
ℕ
0
164
expp1
⊢
1
2
∈
ℂ
∧
d
−
A
∈
ℕ
0
→
1
2
d
-
A
+
1
=
1
2
d
−
A
1
2
165
47
163
164
sylancr
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
2
d
-
A
+
1
=
1
2
d
−
A
1
2
166
161
165
eqtrd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
2
d
+
1
-
A
=
1
2
d
−
A
1
2
167
166
oveq2d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
A
!
1
2
d
+
1
-
A
=
2
−
A
!
1
2
d
−
A
1
2
168
84
rpcnd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
A
!
∈
ℂ
169
92
rpcnd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
2
d
−
A
∈
ℂ
170
47
a1i
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
1
2
∈
ℂ
171
168
169
170
mulassd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
A
!
1
2
d
−
A
1
2
=
2
−
A
!
1
2
d
−
A
1
2
172
167
171
eqtr4d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
A
!
1
2
d
+
1
-
A
=
2
−
A
!
1
2
d
−
A
1
2
173
158
172
breq12d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
+
1
!
≤
2
−
A
!
1
2
d
+
1
-
A
↔
2
−
d
!
2
−
d
!
d
≤
2
−
A
!
1
2
d
−
A
1
2
174
134
173
sylibrd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
→
2
−
d
+
1
!
≤
2
−
A
!
1
2
d
+
1
-
A
175
fveq2
⊢
a
=
d
→
a
!
=
d
!
176
175
negeqd
⊢
a
=
d
→
−
a
!
=
−
d
!
177
176
oveq2d
⊢
a
=
d
→
2
−
a
!
=
2
−
d
!
178
ovex
⊢
2
−
d
!
∈
V
179
177
2
178
fvmpt
⊢
d
∈
ℕ
→
F
d
=
2
−
d
!
180
70
179
syl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
F
d
=
2
−
d
!
181
oveq1
⊢
c
=
d
→
c
−
A
=
d
−
A
182
181
oveq2d
⊢
c
=
d
→
1
2
c
−
A
=
1
2
d
−
A
183
182
oveq2d
⊢
c
=
d
→
2
−
A
!
1
2
c
−
A
=
2
−
A
!
1
2
d
−
A
184
ovex
⊢
2
−
A
!
1
2
d
−
A
∈
V
185
183
1
184
fvmpt
⊢
d
∈
ℤ
≥
A
→
G
d
=
2
−
A
!
1
2
d
−
A
186
185
adantl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
G
d
=
2
−
A
!
1
2
d
−
A
187
180
186
breq12d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
F
d
≤
G
d
↔
2
−
d
!
≤
2
−
A
!
1
2
d
−
A
188
70
peano2nnd
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
d
+
1
∈
ℕ
189
fveq2
⊢
a
=
d
+
1
→
a
!
=
d
+
1
!
190
189
negeqd
⊢
a
=
d
+
1
→
−
a
!
=
−
d
+
1
!
191
190
oveq2d
⊢
a
=
d
+
1
→
2
−
a
!
=
2
−
d
+
1
!
192
ovex
⊢
2
−
d
+
1
!
∈
V
193
191
2
192
fvmpt
⊢
d
+
1
∈
ℕ
→
F
d
+
1
=
2
−
d
+
1
!
194
188
193
syl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
F
d
+
1
=
2
−
d
+
1
!
195
peano2uz
⊢
d
∈
ℤ
≥
A
→
d
+
1
∈
ℤ
≥
A
196
oveq1
⊢
c
=
d
+
1
→
c
−
A
=
d
+
1
-
A
197
196
oveq2d
⊢
c
=
d
+
1
→
1
2
c
−
A
=
1
2
d
+
1
-
A
198
197
oveq2d
⊢
c
=
d
+
1
→
2
−
A
!
1
2
c
−
A
=
2
−
A
!
1
2
d
+
1
-
A
199
ovex
⊢
2
−
A
!
1
2
d
+
1
-
A
∈
V
200
198
1
199
fvmpt
⊢
d
+
1
∈
ℤ
≥
A
→
G
d
+
1
=
2
−
A
!
1
2
d
+
1
-
A
201
195
200
syl
⊢
d
∈
ℤ
≥
A
→
G
d
+
1
=
2
−
A
!
1
2
d
+
1
-
A
202
201
adantl
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
G
d
+
1
=
2
−
A
!
1
2
d
+
1
-
A
203
194
202
breq12d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
F
d
+
1
≤
G
d
+
1
↔
2
−
d
+
1
!
≤
2
−
A
!
1
2
d
+
1
-
A
204
174
187
203
3imtr4d
⊢
A
∈
ℕ
∧
d
∈
ℤ
≥
A
→
F
d
≤
G
d
→
F
d
+
1
≤
G
d
+
1
205
204
expcom
⊢
d
∈
ℤ
≥
A
→
A
∈
ℕ
→
F
d
≤
G
d
→
F
d
+
1
≤
G
d
+
1
206
205
a2d
⊢
d
∈
ℤ
≥
A
→
A
∈
ℕ
→
F
d
≤
G
d
→
A
∈
ℕ
→
F
d
+
1
≤
G
d
+
1
207
23
27
31
35
69
206
uzind4i
⊢
B
∈
ℤ
≥
A
→
A
∈
ℕ
→
F
B
≤
G
B
208
207
impcom
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
F
B
≤
G
B
209
0xr
⊢
0
∈
ℝ
*
210
1
aaliou3lem1
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
G
B
∈
ℝ
211
elioc2
⊢
0
∈
ℝ
*
∧
G
B
∈
ℝ
→
F
B
∈
0
G
B
↔
F
B
∈
ℝ
∧
0
<
F
B
∧
F
B
≤
G
B
212
209
210
211
sylancr
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
F
B
∈
0
G
B
↔
F
B
∈
ℝ
∧
0
<
F
B
∧
F
B
≤
G
B
213
18
19
208
212
mpbir3and
⊢
A
∈
ℕ
∧
B
∈
ℤ
≥
A
→
F
B
∈
0
G
B