Metamath Proof Explorer


Theorem aaliou3lem2

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.a G = c A 2 A ! 1 2 c A
aaliou3lem.b F = a 2 a !
Assertion aaliou3lem2 A B A F B 0 G B

Proof

Step Hyp Ref Expression
1 aaliou3lem.a G = c A 2 A ! 1 2 c A
2 aaliou3lem.b F = a 2 a !
3 eluznn A B A B
4 fveq2 a = B a ! = B !
5 4 negeqd a = B a ! = B !
6 5 oveq2d a = B 2 a ! = 2 B !
7 ovex 2 B ! V
8 6 2 7 fvmpt B F B = 2 B !
9 3 8 syl A B A F B = 2 B !
10 2rp 2 +
11 3 nnnn0d A B A B 0
12 11 faccld A B A B !
13 12 nnzd A B A B !
14 13 znegcld A B A B !
15 rpexpcl 2 + B ! 2 B ! +
16 10 14 15 sylancr A B A 2 B ! +
17 9 16 eqeltrd A B A F B +
18 17 rpred A B A F B
19 17 rpgt0d A B A 0 < F B
20 fveq2 b = A F b = F A
21 fveq2 b = A G b = G A
22 20 21 breq12d b = A F b G b F A G A
23 22 imbi2d b = A A F b G b A F A G A
24 fveq2 b = d F b = F d
25 fveq2 b = d G b = G d
26 24 25 breq12d b = d F b G b F d G d
27 26 imbi2d b = d A F b G b A F d G d
28 fveq2 b = d + 1 F b = F d + 1
29 fveq2 b = d + 1 G b = G d + 1
30 28 29 breq12d b = d + 1 F b G b F d + 1 G d + 1
31 30 imbi2d b = d + 1 A F b G b A F d + 1 G d + 1
32 fveq2 b = B F b = F B
33 fveq2 b = B G b = G B
34 32 33 breq12d b = B F b G b F B G B
35 34 imbi2d b = B A F b G b A F B G B
36 nnnn0 A A 0
37 36 faccld A A !
38 37 nnzd A A !
39 38 znegcld A A !
40 rpexpcl 2 + A ! 2 A ! +
41 10 39 40 sylancr A 2 A ! +
42 41 rpred A 2 A !
43 42 leidd A 2 A ! 2 A !
44 nncn A A
45 44 subidd A A A = 0
46 45 oveq2d A 1 2 A A = 1 2 0
47 halfcn 1 2
48 exp0 1 2 1 2 0 = 1
49 47 48 ax-mp 1 2 0 = 1
50 46 49 eqtrdi A 1 2 A A = 1
51 50 oveq2d A 2 A ! 1 2 A A = 2 A ! 1
52 41 rpcnd A 2 A !
53 52 mulid1d A 2 A ! 1 = 2 A !
54 51 53 eqtrd A 2 A ! 1 2 A A = 2 A !
55 43 54 breqtrrd A 2 A ! 2 A ! 1 2 A A
56 fveq2 a = A a ! = A !
57 56 negeqd a = A a ! = A !
58 57 oveq2d a = A 2 a ! = 2 A !
59 ovex 2 A ! V
60 58 2 59 fvmpt A F A = 2 A !
61 nnz A A
62 uzid A A A
63 oveq1 c = A c A = A A
64 63 oveq2d c = A 1 2 c A = 1 2 A A
65 64 oveq2d c = A 2 A ! 1 2 c A = 2 A ! 1 2 A A
66 ovex 2 A ! 1 2 A A V
67 65 1 66 fvmpt A A G A = 2 A ! 1 2 A A
68 61 62 67 3syl A G A = 2 A ! 1 2 A A
69 55 60 68 3brtr4d A F A G A
70 eluznn A d A d
71 70 nnnn0d A d A d 0
72 71 faccld A d A d !
73 72 nnzd A d A d !
74 73 znegcld A d A d !
75 rpexpcl 2 + d ! 2 d ! +
76 10 74 75 sylancr A d A 2 d ! +
77 76 rpred A d A 2 d !
78 76 rpge0d A d A 0 2 d !
79 simpl A d A A
80 79 nnnn0d A d A A 0
81 80 faccld A d A A !
82 81 nnzd A d A A !
83 82 znegcld A d A A !
84 10 83 40 sylancr A d A 2 A ! +
85 halfre 1 2
86 halfgt0 0 < 1 2
87 85 86 elrpii 1 2 +
88 eluzelz d A d
89 zsubcl d A d A
90 88 61 89 syl2anr A d A d A
91 rpexpcl 1 2 + d A 1 2 d A +
92 87 90 91 sylancr A d A 1 2 d A +
93 84 92 rpmulcld A d A 2 A ! 1 2 d A +
94 93 rpred A d A 2 A ! 1 2 d A
95 77 78 94 jca31 A d A 2 d ! 0 2 d ! 2 A ! 1 2 d A
96 95 adantr A d A 2 d ! 2 A ! 1 2 d A 2 d ! 0 2 d ! 2 A ! 1 2 d A
97 88 adantl A d A d
98 74 97 zmulcld A d A d ! d
99 rpexpcl 2 + d ! d 2 d ! d +
100 10 98 99 sylancr A d A 2 d ! d +
101 100 rpred A d A 2 d ! d
102 100 rpge0d A d A 0 2 d ! d
103 85 a1i A d A 1 2
104 101 102 103 jca31 A d A 2 d ! d 0 2 d ! d 1 2
105 104 adantr A d A 2 d ! 2 A ! 1 2 d A 2 d ! d 0 2 d ! d 1 2
106 simpr A d A 2 d ! 2 A ! 1 2 d A 2 d ! 2 A ! 1 2 d A
107 2re 2
108 1le2 1 2
109 72 nncnd A d A d !
110 97 zcnd A d A d
111 109 110 mulneg1d A d A d ! d = d ! d
112 72 70 nnmulcld A d A d ! d
113 112 nnge1d A d A 1 d ! d
114 1re 1
115 112 nnred A d A d ! d
116 leneg 1 d ! d 1 d ! d d ! d 1
117 114 115 116 sylancr A d A 1 d ! d d ! d 1
118 113 117 mpbid A d A d ! d 1
119 111 118 eqbrtrd A d A d ! d 1
120 neg1z 1
121 eluz d ! d 1 1 d ! d d ! d 1
122 98 120 121 sylancl A d A 1 d ! d d ! d 1
123 119 122 mpbird A d A 1 d ! d
124 leexp2a 2 1 2 1 d ! d 2 d ! d 2 1
125 107 108 123 124 mp3an12i A d A 2 d ! d 2 1
126 2cn 2
127 expn1 2 2 1 = 1 2
128 126 127 ax-mp 2 1 = 1 2
129 125 128 breqtrdi A d A 2 d ! d 1 2
130 129 adantr A d A 2 d ! 2 A ! 1 2 d A 2 d ! d 1 2
131 lemul12a 2 d ! 0 2 d ! 2 A ! 1 2 d A 2 d ! d 0 2 d ! d 1 2 2 d ! 2 A ! 1 2 d A 2 d ! d 1 2 2 d ! 2 d ! d 2 A ! 1 2 d A 1 2
132 131 3impia 2 d ! 0 2 d ! 2 A ! 1 2 d A 2 d ! d 0 2 d ! d 1 2 2 d ! 2 A ! 1 2 d A 2 d ! d 1 2 2 d ! 2 d ! d 2 A ! 1 2 d A 1 2
133 96 105 106 130 132 syl112anc A d A 2 d ! 2 A ! 1 2 d A 2 d ! 2 d ! d 2 A ! 1 2 d A 1 2
134 133 ex A d A 2 d ! 2 A ! 1 2 d A 2 d ! 2 d ! d 2 A ! 1 2 d A 1 2
135 facp1 d 0 d + 1 ! = d ! d + 1
136 71 135 syl A d A d + 1 ! = d ! d + 1
137 136 negeqd A d A d + 1 ! = d ! d + 1
138 ax-1cn 1
139 addcom d 1 d + 1 = 1 + d
140 110 138 139 sylancl A d A d + 1 = 1 + d
141 140 oveq2d A d A d ! d + 1 = d ! 1 + d
142 peano2cn d d + 1
143 110 142 syl A d A d + 1
144 109 143 mulneg1d A d A d ! d + 1 = d ! d + 1
145 74 zcnd A d A d !
146 1cnd A d A 1
147 145 146 110 adddid A d A d ! 1 + d = d ! 1 + d ! d
148 145 mulid1d A d A d ! 1 = d !
149 148 oveq1d A d A d ! 1 + d ! d = - d ! + d ! d
150 147 149 eqtrd A d A d ! 1 + d = - d ! + d ! d
151 141 144 150 3eqtr3d A d A d ! d + 1 = - d ! + d ! d
152 137 151 eqtrd A d A d + 1 ! = - d ! + d ! d
153 152 oveq2d A d A 2 d + 1 ! = 2 - d ! + d ! d
154 2cnne0 2 2 0
155 expaddz 2 2 0 d ! d ! d 2 - d ! + d ! d = 2 d ! 2 d ! d
156 154 155 mpan d ! d ! d 2 - d ! + d ! d = 2 d ! 2 d ! d
157 74 98 156 syl2anc A d A 2 - d ! + d ! d = 2 d ! 2 d ! d
158 153 157 eqtrd A d A 2 d + 1 ! = 2 d ! 2 d ! d
159 44 adantr A d A A
160 110 146 159 addsubd A d A d + 1 - A = d - A + 1
161 160 oveq2d A d A 1 2 d + 1 - A = 1 2 d - A + 1
162 uznn0sub d A d A 0
163 162 adantl A d A d A 0
164 expp1 1 2 d A 0 1 2 d - A + 1 = 1 2 d A 1 2
165 47 163 164 sylancr A d A 1 2 d - A + 1 = 1 2 d A 1 2
166 161 165 eqtrd A d A 1 2 d + 1 - A = 1 2 d A 1 2
167 166 oveq2d A d A 2 A ! 1 2 d + 1 - A = 2 A ! 1 2 d A 1 2
168 84 rpcnd A d A 2 A !
169 92 rpcnd A d A 1 2 d A
170 47 a1i A d A 1 2
171 168 169 170 mulassd A d A 2 A ! 1 2 d A 1 2 = 2 A ! 1 2 d A 1 2
172 167 171 eqtr4d A d A 2 A ! 1 2 d + 1 - A = 2 A ! 1 2 d A 1 2
173 158 172 breq12d A d A 2 d + 1 ! 2 A ! 1 2 d + 1 - A 2 d ! 2 d ! d 2 A ! 1 2 d A 1 2
174 134 173 sylibrd A d A 2 d ! 2 A ! 1 2 d A 2 d + 1 ! 2 A ! 1 2 d + 1 - A
175 fveq2 a = d a ! = d !
176 175 negeqd a = d a ! = d !
177 176 oveq2d a = d 2 a ! = 2 d !
178 ovex 2 d ! V
179 177 2 178 fvmpt d F d = 2 d !
180 70 179 syl A d A F d = 2 d !
181 oveq1 c = d c A = d A
182 181 oveq2d c = d 1 2 c A = 1 2 d A
183 182 oveq2d c = d 2 A ! 1 2 c A = 2 A ! 1 2 d A
184 ovex 2 A ! 1 2 d A V
185 183 1 184 fvmpt d A G d = 2 A ! 1 2 d A
186 185 adantl A d A G d = 2 A ! 1 2 d A
187 180 186 breq12d A d A F d G d 2 d ! 2 A ! 1 2 d A
188 70 peano2nnd A d A d + 1
189 fveq2 a = d + 1 a ! = d + 1 !
190 189 negeqd a = d + 1 a ! = d + 1 !
191 190 oveq2d a = d + 1 2 a ! = 2 d + 1 !
192 ovex 2 d + 1 ! V
193 191 2 192 fvmpt d + 1 F d + 1 = 2 d + 1 !
194 188 193 syl A d A F d + 1 = 2 d + 1 !
195 peano2uz d A d + 1 A
196 oveq1 c = d + 1 c A = d + 1 - A
197 196 oveq2d c = d + 1 1 2 c A = 1 2 d + 1 - A
198 197 oveq2d c = d + 1 2 A ! 1 2 c A = 2 A ! 1 2 d + 1 - A
199 ovex 2 A ! 1 2 d + 1 - A V
200 198 1 199 fvmpt d + 1 A G d + 1 = 2 A ! 1 2 d + 1 - A
201 195 200 syl d A G d + 1 = 2 A ! 1 2 d + 1 - A
202 201 adantl A d A G d + 1 = 2 A ! 1 2 d + 1 - A
203 194 202 breq12d A d A F d + 1 G d + 1 2 d + 1 ! 2 A ! 1 2 d + 1 - A
204 174 187 203 3imtr4d A d A F d G d F d + 1 G d + 1
205 204 expcom d A A F d G d F d + 1 G d + 1
206 205 a2d d A A F d G d A F d + 1 G d + 1
207 23 27 31 35 69 206 uzind4i B A A F B G B
208 207 impcom A B A F B G B
209 0xr 0 *
210 1 aaliou3lem1 A B A G B
211 elioc2 0 * G B F B 0 G B F B 0 < F B F B G B
212 209 210 211 sylancr A B A F B 0 G B F B 0 < F B F B G B
213 18 19 208 212 mpbir3and A B A F B 0 G B