Metamath Proof Explorer


Theorem aaliou3lem2

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.a G=cA2A!12cA
aaliou3lem.b F=a2a!
Assertion aaliou3lem2 ABAFB0GB

Proof

Step Hyp Ref Expression
1 aaliou3lem.a G=cA2A!12cA
2 aaliou3lem.b F=a2a!
3 eluznn ABAB
4 fveq2 a=Ba!=B!
5 4 negeqd a=Ba!=B!
6 5 oveq2d a=B2a!=2B!
7 ovex 2B!V
8 6 2 7 fvmpt BFB=2B!
9 3 8 syl ABAFB=2B!
10 2rp 2+
11 3 nnnn0d ABAB0
12 11 faccld ABAB!
13 12 nnzd ABAB!
14 13 znegcld ABAB!
15 rpexpcl 2+B!2B!+
16 10 14 15 sylancr ABA2B!+
17 9 16 eqeltrd ABAFB+
18 17 rpred ABAFB
19 17 rpgt0d ABA0<FB
20 fveq2 b=AFb=FA
21 fveq2 b=AGb=GA
22 20 21 breq12d b=AFbGbFAGA
23 22 imbi2d b=AAFbGbAFAGA
24 fveq2 b=dFb=Fd
25 fveq2 b=dGb=Gd
26 24 25 breq12d b=dFbGbFdGd
27 26 imbi2d b=dAFbGbAFdGd
28 fveq2 b=d+1Fb=Fd+1
29 fveq2 b=d+1Gb=Gd+1
30 28 29 breq12d b=d+1FbGbFd+1Gd+1
31 30 imbi2d b=d+1AFbGbAFd+1Gd+1
32 fveq2 b=BFb=FB
33 fveq2 b=BGb=GB
34 32 33 breq12d b=BFbGbFBGB
35 34 imbi2d b=BAFbGbAFBGB
36 nnnn0 AA0
37 36 faccld AA!
38 37 nnzd AA!
39 38 znegcld AA!
40 rpexpcl 2+A!2A!+
41 10 39 40 sylancr A2A!+
42 41 rpred A2A!
43 42 leidd A2A!2A!
44 nncn AA
45 44 subidd AAA=0
46 45 oveq2d A12AA=120
47 halfcn 12
48 exp0 12120=1
49 47 48 ax-mp 120=1
50 46 49 eqtrdi A12AA=1
51 50 oveq2d A2A!12AA=2A!1
52 41 rpcnd A2A!
53 52 mulridd A2A!1=2A!
54 51 53 eqtrd A2A!12AA=2A!
55 43 54 breqtrrd A2A!2A!12AA
56 fveq2 a=Aa!=A!
57 56 negeqd a=Aa!=A!
58 57 oveq2d a=A2a!=2A!
59 ovex 2A!V
60 58 2 59 fvmpt AFA=2A!
61 nnz AA
62 uzid AAA
63 oveq1 c=AcA=AA
64 63 oveq2d c=A12cA=12AA
65 64 oveq2d c=A2A!12cA=2A!12AA
66 ovex 2A!12AAV
67 65 1 66 fvmpt AAGA=2A!12AA
68 61 62 67 3syl AGA=2A!12AA
69 55 60 68 3brtr4d AFAGA
70 eluznn AdAd
71 70 nnnn0d AdAd0
72 71 faccld AdAd!
73 72 nnzd AdAd!
74 73 znegcld AdAd!
75 rpexpcl 2+d!2d!+
76 10 74 75 sylancr AdA2d!+
77 76 rpred AdA2d!
78 76 rpge0d AdA02d!
79 simpl AdAA
80 79 nnnn0d AdAA0
81 80 faccld AdAA!
82 81 nnzd AdAA!
83 82 znegcld AdAA!
84 10 83 40 sylancr AdA2A!+
85 halfre 12
86 halfgt0 0<12
87 85 86 elrpii 12+
88 eluzelz dAd
89 zsubcl dAdA
90 88 61 89 syl2anr AdAdA
91 rpexpcl 12+dA12dA+
92 87 90 91 sylancr AdA12dA+
93 84 92 rpmulcld AdA2A!12dA+
94 93 rpred AdA2A!12dA
95 77 78 94 jca31 AdA2d!02d!2A!12dA
96 95 adantr AdA2d!2A!12dA2d!02d!2A!12dA
97 88 adantl AdAd
98 74 97 zmulcld AdAd!d
99 rpexpcl 2+d!d2d!d+
100 10 98 99 sylancr AdA2d!d+
101 100 rpred AdA2d!d
102 100 rpge0d AdA02d!d
103 85 a1i AdA12
104 101 102 103 jca31 AdA2d!d02d!d12
105 104 adantr AdA2d!2A!12dA2d!d02d!d12
106 simpr AdA2d!2A!12dA2d!2A!12dA
107 2re 2
108 1le2 12
109 72 nncnd AdAd!
110 97 zcnd AdAd
111 109 110 mulneg1d AdAd!d=d!d
112 72 70 nnmulcld AdAd!d
113 112 nnge1d AdA1d!d
114 1re 1
115 112 nnred AdAd!d
116 leneg 1d!d1d!dd!d1
117 114 115 116 sylancr AdA1d!dd!d1
118 113 117 mpbid AdAd!d1
119 111 118 eqbrtrd AdAd!d1
120 neg1z 1
121 eluz d!d11d!dd!d1
122 98 120 121 sylancl AdA1d!dd!d1
123 119 122 mpbird AdA1d!d
124 leexp2a 2121d!d2d!d21
125 107 108 123 124 mp3an12i AdA2d!d21
126 2cn 2
127 expn1 221=12
128 126 127 ax-mp 21=12
129 125 128 breqtrdi AdA2d!d12
130 129 adantr AdA2d!2A!12dA2d!d12
131 lemul12a 2d!02d!2A!12dA2d!d02d!d122d!2A!12dA2d!d122d!2d!d2A!12dA12
132 131 3impia 2d!02d!2A!12dA2d!d02d!d122d!2A!12dA2d!d122d!2d!d2A!12dA12
133 96 105 106 130 132 syl112anc AdA2d!2A!12dA2d!2d!d2A!12dA12
134 133 ex AdA2d!2A!12dA2d!2d!d2A!12dA12
135 facp1 d0d+1!=d!d+1
136 71 135 syl AdAd+1!=d!d+1
137 136 negeqd AdAd+1!=d!d+1
138 ax-1cn 1
139 addcom d1d+1=1+d
140 110 138 139 sylancl AdAd+1=1+d
141 140 oveq2d AdAd!d+1=d!1+d
142 peano2cn dd+1
143 110 142 syl AdAd+1
144 109 143 mulneg1d AdAd!d+1=d!d+1
145 74 zcnd AdAd!
146 1cnd AdA1
147 145 146 110 adddid AdAd!1+d=d!1+d!d
148 145 mulridd AdAd!1=d!
149 148 oveq1d AdAd!1+d!d=-d!+d!d
150 147 149 eqtrd AdAd!1+d=-d!+d!d
151 141 144 150 3eqtr3d AdAd!d+1=-d!+d!d
152 137 151 eqtrd AdAd+1!=-d!+d!d
153 152 oveq2d AdA2d+1!=2-d!+d!d
154 2cnne0 220
155 expaddz 220d!d!d2-d!+d!d=2d!2d!d
156 154 155 mpan d!d!d2-d!+d!d=2d!2d!d
157 74 98 156 syl2anc AdA2-d!+d!d=2d!2d!d
158 153 157 eqtrd AdA2d+1!=2d!2d!d
159 44 adantr AdAA
160 110 146 159 addsubd AdAd+1-A=d-A+1
161 160 oveq2d AdA12d+1-A=12d-A+1
162 uznn0sub dAdA0
163 162 adantl AdAdA0
164 expp1 12dA012d-A+1=12dA12
165 47 163 164 sylancr AdA12d-A+1=12dA12
166 161 165 eqtrd AdA12d+1-A=12dA12
167 166 oveq2d AdA2A!12d+1-A=2A!12dA12
168 84 rpcnd AdA2A!
169 92 rpcnd AdA12dA
170 47 a1i AdA12
171 168 169 170 mulassd AdA2A!12dA12=2A!12dA12
172 167 171 eqtr4d AdA2A!12d+1-A=2A!12dA12
173 158 172 breq12d AdA2d+1!2A!12d+1-A2d!2d!d2A!12dA12
174 134 173 sylibrd AdA2d!2A!12dA2d+1!2A!12d+1-A
175 fveq2 a=da!=d!
176 175 negeqd a=da!=d!
177 176 oveq2d a=d2a!=2d!
178 ovex 2d!V
179 177 2 178 fvmpt dFd=2d!
180 70 179 syl AdAFd=2d!
181 oveq1 c=dcA=dA
182 181 oveq2d c=d12cA=12dA
183 182 oveq2d c=d2A!12cA=2A!12dA
184 ovex 2A!12dAV
185 183 1 184 fvmpt dAGd=2A!12dA
186 185 adantl AdAGd=2A!12dA
187 180 186 breq12d AdAFdGd2d!2A!12dA
188 70 peano2nnd AdAd+1
189 fveq2 a=d+1a!=d+1!
190 189 negeqd a=d+1a!=d+1!
191 190 oveq2d a=d+12a!=2d+1!
192 ovex 2d+1!V
193 191 2 192 fvmpt d+1Fd+1=2d+1!
194 188 193 syl AdAFd+1=2d+1!
195 peano2uz dAd+1A
196 oveq1 c=d+1cA=d+1-A
197 196 oveq2d c=d+112cA=12d+1-A
198 197 oveq2d c=d+12A!12cA=2A!12d+1-A
199 ovex 2A!12d+1-AV
200 198 1 199 fvmpt d+1AGd+1=2A!12d+1-A
201 195 200 syl dAGd+1=2A!12d+1-A
202 201 adantl AdAGd+1=2A!12d+1-A
203 194 202 breq12d AdAFd+1Gd+12d+1!2A!12d+1-A
204 174 187 203 3imtr4d AdAFdGdFd+1Gd+1
205 204 expcom dAAFdGdFd+1Gd+1
206 205 a2d dAAFdGdAFd+1Gd+1
207 23 27 31 35 69 206 uzind4i BAAFBGB
208 207 impcom ABAFBGB
209 0xr 0*
210 1 aaliou3lem1 ABAGB
211 elioc2 0*GBFB0GBFB0<FBFBGB
212 209 210 211 sylancr ABAFB0GBFB0<FBFBGB
213 18 19 208 212 mpbir3and ABAFB0GB