Metamath Proof Explorer


Theorem aks4d1p1

Description: Show inequality for existence of a non-divisor. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Hypotheses aks4d1p1.1 φ N 3
aks4d1p1.2 A = N log 2 B k = 1 log 2 N 2 N k 1
aks4d1p1.3 B = log 2 N 5
Assertion aks4d1p1 φ A < 2 B

Proof

Step Hyp Ref Expression
1 aks4d1p1.1 φ N 3
2 aks4d1p1.2 A = N log 2 B k = 1 log 2 N 2 N k 1
3 aks4d1p1.3 B = log 2 N 5
4 3nn 3
5 4 a1i φ 3 < N 3
6 1 adantr φ 3 < N N 3
7 eluznn 3 N 3 N
8 5 6 7 syl2anc φ 3 < N N
9 3p1e4 3 + 1 = 4
10 simpr φ 3 < N 3 < N
11 3z 3
12 11 a1i φ 3 < N 3
13 eluzelz N 3 N
14 1 13 syl φ N
15 14 adantr φ 3 < N N
16 12 15 zltp1led φ 3 < N 3 < N 3 + 1 N
17 10 16 mpbid φ 3 < N 3 + 1 N
18 9 17 eqbrtrrid φ 3 < N 4 N
19 eqid log 2 log 2 N 5 + 1 = log 2 log 2 N 5 + 1
20 eqid log 2 N 2 = log 2 N 2
21 eqid log 2 N 4 = log 2 N 4
22 8 2 3 18 19 20 21 aks4d1p1p5 φ 3 < N A < 2 B
23 22 ex φ 3 < N A < 2 B
24 simp2 φ 3 = N k 1 log 2 3 2 3 = N
25 24 eqcomd φ 3 = N k 1 log 2 3 2 N = 3
26 25 oveq1d φ 3 = N k 1 log 2 3 2 N k = 3 k
27 26 oveq1d φ 3 = N k 1 log 2 3 2 N k 1 = 3 k 1
28 27 3expa φ 3 = N k 1 log 2 3 2 N k 1 = 3 k 1
29 28 prodeq2dv φ 3 = N k = 1 log 2 3 2 N k 1 = k = 1 log 2 3 2 3 k 1
30 29 oveq2d φ 3 = N 3 log 2 log 2 3 5 k = 1 log 2 3 2 N k 1 = 3 log 2 log 2 3 5 k = 1 log 2 3 2 3 k 1
31 2rp 2 +
32 31 a1i φ 2 +
33 1red φ 1
34 1lt2 1 < 2
35 34 a1i φ 1 < 2
36 33 35 ltned φ 1 2
37 36 necomd φ 2 1
38 11 a1i φ 3
39 32 37 38 relogbexpd φ log 2 2 3 = 3
40 39 eqcomd φ 3 = log 2 2 3
41 cu2 2 3 = 8
42 41 a1i φ 2 3 = 8
43 42 oveq2d φ log 2 2 3 = log 2 8
44 40 43 eqtrd φ 3 = log 2 8
45 2z 2
46 45 a1i φ 2
47 46 zred φ 2
48 47 leidd φ 2 2
49 8re 8
50 49 a1i φ 8
51 8pos 0 < 8
52 51 a1i φ 0 < 8
53 32 rpgt0d φ 0 < 2
54 3re 3
55 54 a1i φ 3
56 4 nngt0i 0 < 3
57 56 a1i φ 0 < 3
58 47 53 55 57 37 relogbcld φ log 2 3
59 5nn0 5 0
60 59 a1i φ 5 0
61 58 60 reexpcld φ log 2 3 5
62 ceilcl log 2 3 5 log 2 3 5
63 61 62 syl φ log 2 3 5
64 63 zred φ log 2 3 5
65 0red φ 0
66 9re 9
67 66 a1i φ 9
68 50 lep1d φ 8 8 + 1
69 8p1e9 8 + 1 = 9
70 69 a1i φ 8 + 1 = 9
71 68 70 breqtrd φ 8 9
72 2re 2
73 72 a1i φ 2
74 2pos 0 < 2
75 74 a1i φ 0 < 2
76 3pos 0 < 3
77 76 a1i φ 0 < 3
78 73 75 55 77 37 relogbcld φ log 2 3
79 78 60 reexpcld φ log 2 3 5
80 79 62 syl φ log 2 3 5
81 80 zred φ log 2 3 5
82 55 leidd φ 3 3
83 55 82 3lexlogpow5ineq4 φ 9 < log 2 3 5
84 67 79 83 ltled φ 9 log 2 3 5
85 ceilge log 2 3 5 log 2 3 5 log 2 3 5
86 79 85 syl φ log 2 3 5 log 2 3 5
87 67 79 81 84 86 letrd φ 9 log 2 3 5
88 50 67 64 71 87 letrd φ 8 log 2 3 5
89 65 50 64 52 88 ltletrd φ 0 < log 2 3 5
90 46 48 50 52 64 89 88 logblebd φ log 2 8 log 2 log 2 3 5
91 44 90 eqbrtrd φ 3 log 2 log 2 3 5
92 79 33 readdcld φ log 2 3 5 + 1
93 1nn0 1 0
94 6nn 6
95 93 94 decnncl 16
96 95 a1i φ 16
97 96 nnred φ 16
98 ceilm1lt log 2 3 5 log 2 3 5 1 < log 2 3 5
99 79 98 syl φ log 2 3 5 1 < log 2 3 5
100 81 33 79 ltsubaddd φ log 2 3 5 1 < log 2 3 5 log 2 3 5 < log 2 3 5 + 1
101 99 100 mpbid φ log 2 3 5 < log 2 3 5 + 1
102 3lexlogpow5ineq5 log 2 3 5 15
103 102 a1i φ log 2 3 5 15
104 5p1e6 5 + 1 = 6
105 eqid 15 = 15
106 93 59 104 105 decsuc 15 + 1 = 16
107 106 a1i φ 15 + 1 = 16
108 97 recnd φ 16
109 1cnd φ 1
110 5nn 5
111 93 110 decnncl 15
112 111 a1i φ 15
113 112 nncnd φ 15
114 108 109 113 subadd2d φ 16 1 = 15 15 + 1 = 16
115 107 114 mpbird φ 16 1 = 15
116 115 eqcomd φ 15 = 16 1
117 103 116 breqtrd φ log 2 3 5 16 1
118 leaddsub log 2 3 5 1 16 log 2 3 5 + 1 16 log 2 3 5 16 1
119 79 33 97 118 syl3anc φ log 2 3 5 + 1 16 log 2 3 5 16 1
120 117 119 mpbird φ log 2 3 5 + 1 16
121 81 92 97 101 120 ltletrd φ log 2 3 5 < 16
122 eqid 16 = 16
123 2exp4 2 4 = 16
124 122 123 eqtr4i 16 = 2 4
125 124 a1i φ 16 = 2 4
126 121 125 breqtrd φ log 2 3 5 < 2 4
127 46 uzidd φ 2 2
128 64 89 elrpd φ log 2 3 5 +
129 4z 4
130 129 a1i φ 4
131 32 130 rpexpcld φ 2 4 +
132 logblt 2 2 log 2 3 5 + 2 4 + log 2 3 5 < 2 4 log 2 log 2 3 5 < log 2 2 4
133 127 128 131 132 syl3anc φ log 2 3 5 < 2 4 log 2 log 2 3 5 < log 2 2 4
134 126 133 mpbid φ log 2 log 2 3 5 < log 2 2 4
135 32 37 130 relogbexpd φ log 2 2 4 = 4
136 9 eqcomi 4 = 3 + 1
137 136 a1i φ 4 = 3 + 1
138 135 137 eqtrd φ log 2 2 4 = 3 + 1
139 134 138 breqtrd φ log 2 log 2 3 5 < 3 + 1
140 91 139 jca φ 3 log 2 log 2 3 5 log 2 log 2 3 5 < 3 + 1
141 73 75 55 57 37 relogbcld φ log 2 3
142 141 60 reexpcld φ log 2 3 5
143 142 62 syl φ log 2 3 5
144 143 zred φ log 2 3 5
145 9pos 0 < 9
146 145 a1i φ 0 < 9
147 65 67 144 146 87 ltletrd φ 0 < log 2 3 5
148 73 75 144 147 37 relogbcld φ log 2 log 2 3 5
149 flbi log 2 log 2 3 5 3 log 2 log 2 3 5 = 3 3 log 2 log 2 3 5 log 2 log 2 3 5 < 3 + 1
150 148 38 149 syl2anc φ log 2 log 2 3 5 = 3 3 log 2 log 2 3 5 log 2 log 2 3 5 < 3 + 1
151 140 150 mpbird φ log 2 log 2 3 5 = 3
152 151 oveq2d φ 3 log 2 log 2 3 5 = 3 3
153 78 resqcld φ log 2 3 2
154 3lexlogpow2ineq2 2 < log 2 3 2 log 2 3 2 < 3
155 154 a1i φ 2 < log 2 3 2 log 2 3 2 < 3
156 155 simpld φ 2 < log 2 3 2
157 73 153 156 ltled φ 2 log 2 3 2
158 155 simprd φ log 2 3 2 < 3
159 df-3 3 = 2 + 1
160 159 a1i φ 3 = 2 + 1
161 158 160 breqtrd φ log 2 3 2 < 2 + 1
162 157 161 jca φ 2 log 2 3 2 log 2 3 2 < 2 + 1
163 141 resqcld φ log 2 3 2
164 flbi log 2 3 2 2 log 2 3 2 = 2 2 log 2 3 2 log 2 3 2 < 2 + 1
165 163 46 164 syl2anc φ log 2 3 2 = 2 2 log 2 3 2 log 2 3 2 < 2 + 1
166 162 165 mpbird φ log 2 3 2 = 2
167 166 oveq2d φ 1 log 2 3 2 = 1 2
168 167 prodeq1d φ k = 1 log 2 3 2 3 k 1 = k = 1 2 3 k 1
169 1zzd φ 1
170 169 46 jca φ 1 2
171 1le2 1 2
172 171 a1i 1 2 1 2
173 eluz 1 2 2 1 1 2
174 172 173 mpbird 1 2 2 1
175 170 174 syl φ 2 1
176 3cn 3
177 176 a1i φ k 1 2 3
178 elfznn k 1 2 k
179 178 adantl φ k 1 2 k
180 179 nnnn0d φ k 1 2 k 0
181 177 180 expcld φ k 1 2 3 k
182 1cnd φ k 1 2 1
183 181 182 subcld φ k 1 2 3 k 1
184 oveq2 k = 2 3 k = 3 2
185 184 oveq1d k = 2 3 k 1 = 3 2 1
186 175 183 185 fprodm1 φ k = 1 2 3 k 1 = k = 1 2 1 3 k 1 3 2 1
187 2m1e1 2 1 = 1
188 187 a1i φ 2 1 = 1
189 188 oveq2d φ 1 2 1 = 1 1
190 189 prodeq1d φ k = 1 2 1 3 k 1 = k = 1 1 3 k 1
191 55 recnd φ 3
192 93 a1i φ 1 0
193 191 192 expcld φ 3 1
194 193 109 subcld φ 3 1 1
195 169 194 jca φ 1 3 1 1
196 oveq2 k = 1 3 k = 3 1
197 196 oveq1d k = 1 3 k 1 = 3 1 1
198 197 fprod1 1 3 1 1 k = 1 1 3 k 1 = 3 1 1
199 195 198 syl φ k = 1 1 3 k 1 = 3 1 1
200 190 199 eqtrd φ k = 1 2 1 3 k 1 = 3 1 1
201 200 oveq1d φ k = 1 2 1 3 k 1 3 2 1 = 3 1 1 3 2 1
202 186 201 eqtrd φ k = 1 2 3 k 1 = 3 1 1 3 2 1
203 168 202 eqtrd φ k = 1 log 2 3 2 3 k 1 = 3 1 1 3 2 1
204 152 203 oveq12d φ 3 log 2 log 2 3 5 k = 1 log 2 3 2 3 k 1 = 3 3 3 1 1 3 2 1
205 3nn0 3 0
206 205 a1i φ 3 0
207 55 206 reexpcld φ 3 3
208 55 192 reexpcld φ 3 1
209 208 33 resubcld φ 3 1 1
210 55 resqcld φ 3 2
211 210 33 resubcld φ 3 2 1
212 209 211 remulcld φ 3 1 1 3 2 1
213 207 212 remulcld φ 3 3 3 1 1 3 2 1
214 9nn0 9 0
215 214 a1i φ 9 0
216 73 215 reexpcld φ 2 9
217 216 33 resubcld φ 2 9 1
218 elnnz log 2 3 5 log 2 3 5 0 < log 2 3 5
219 143 147 218 sylanbrc φ log 2 3 5
220 219 orcd φ log 2 3 5 log 2 3 5 = 0
221 elnn0 log 2 3 5 0 log 2 3 5 log 2 3 5 = 0
222 221 a1i φ log 2 3 5 0 log 2 3 5 log 2 3 5 = 0
223 220 222 mpbird φ log 2 3 5 0
224 73 223 reexpcld φ 2 log 2 3 5
225 8cn 8
226 2cn 2
227 8t2e16 8 2 = 16
228 225 226 227 mulcomli 2 8 = 16
229 228 a1i φ 2 8 = 16
230 229 oveq2d φ 27 2 8 = 27 16
231 6nn0 6 0
232 93 231 deccl 16 0
233 2nn0 2 0
234 7nn0 7 0
235 eqid 27 = 27
236 93 93 deccl 11 0
237 0nn0 0 0
238 233 dec0h 2 = 02
239 eqid 11 = 11
240 232 nn0cni 16
241 240 mul02i 0 16 = 0
242 ax-1cn 1
243 176 242 9 addcomli 1 + 3 = 4
244 241 243 oveq12i 0 16 + 1 + 3 = 0 + 4
245 4cn 4
246 245 addid2i 0 + 4 = 4
247 244 246 eqtri 0 16 + 1 + 3 = 4
248 93 dec0h 1 = 01
249 2t1e2 2 1 = 2
250 0p1e1 0 + 1 = 1
251 249 250 oveq12i 2 1 + 0 + 1 = 2 + 1
252 2p1e3 2 + 1 = 3
253 251 252 eqtri 2 1 + 0 + 1 = 3
254 6cn 6
255 6t2e12 6 2 = 12
256 254 226 255 mulcomli 2 6 = 12
257 93 233 252 256 decsuc 2 6 + 1 = 13
258 93 231 237 93 122 248 233 205 93 253 257 decma2c 2 16 + 1 = 33
259 237 233 93 93 238 239 232 205 205 247 258 decmac 2 16 + 11 = 43
260 4nn0 4 0
261 7cn 7
262 261 mulid1i 7 1 = 7
263 262 oveq1i 7 1 + 4 = 7 + 4
264 7p4e11 7 + 4 = 11
265 263 264 eqtri 7 1 + 4 = 11
266 7t6e42 7 6 = 42
267 234 93 231 122 233 260 265 266 decmul2c 7 16 = 112
268 232 233 234 235 233 236 259 267 decmul1c 27 16 = 432
269 268 a1i φ 27 16 = 432
270 230 269 eqtrd φ 27 2 8 = 432
271 260 205 deccl 43 0
272 59 93 deccl 51 0
273 2lt10 2 < 10
274 3lt10 3 < 10
275 4lt5 4 < 5
276 260 59 205 93 274 275 decltc 43 < 51
277 271 272 233 93 273 276 decltc 432 < 511
278 277 a1i φ 432 < 511
279 270 278 eqbrtrd φ 27 2 8 < 511
280 3exp3 3 3 = 27
281 280 a1i φ 3 3 = 27
282 281 eqcomd φ 27 = 3 3
283 191 exp1d φ 3 1 = 3
284 283 oveq1d φ 3 1 1 = 3 1
285 3m1e2 3 1 = 2
286 285 a1i φ 3 1 = 2
287 284 286 eqtr2d φ 2 = 3 1 1
288 sq3 3 2 = 9
289 288 a1i φ 3 2 = 9
290 289 oveq1d φ 3 2 1 = 9 1
291 9m1e8 9 1 = 8
292 291 a1i φ 9 1 = 8
293 290 292 eqtr2d φ 8 = 3 2 1
294 287 293 oveq12d φ 2 8 = 3 1 1 3 2 1
295 282 294 oveq12d φ 27 2 8 = 3 3 3 1 1 3 2 1
296 df-9 9 = 8 + 1
297 296 a1i φ 9 = 8 + 1
298 297 oveq2d φ 2 9 = 2 8 + 1
299 287 194 eqeltrd φ 2
300 8nn0 8 0
301 300 a1i φ 8 0
302 299 192 301 expaddd φ 2 8 + 1 = 2 8 2 1
303 298 302 eqtrd φ 2 9 = 2 8 2 1
304 2exp8 2 8 = 256
305 304 a1i φ 2 8 = 256
306 305 oveq1d φ 2 8 2 1 = 256 2 1
307 299 exp1d φ 2 1 = 2
308 307 oveq2d φ 256 2 1 = 256 2
309 306 308 eqtrd φ 2 8 2 1 = 256 2
310 233 59 deccl 25 0
311 eqid 256 = 256
312 eqid 25 = 25
313 2t2e4 2 2 = 4
314 313 250 oveq12i 2 2 + 0 + 1 = 4 + 1
315 4p1e5 4 + 1 = 5
316 314 315 eqtri 2 2 + 0 + 1 = 5
317 5t2e10 5 2 = 10
318 93 237 250 317 decsuc 5 2 + 1 = 11
319 233 59 237 93 312 248 233 93 93 316 318 decmac 25 2 + 1 = 51
320 233 310 231 311 233 93 319 255 decmul1c 256 2 = 512
321 320 a1i φ 256 2 = 512
322 309 321 eqtrd φ 2 8 2 1 = 512
323 303 322 eqtrd φ 2 9 = 512
324 323 oveq1d φ 2 9 1 = 512 1
325 1p1e2 1 + 1 = 2
326 eqid 511 = 511
327 272 93 325 326 decsuc 511 + 1 = 512
328 272 233 deccl 512 0
329 328 nn0cni 512
330 272 93 deccl 511 0
331 330 nn0cni 511
332 329 242 331 subadd2i 512 1 = 511 511 + 1 = 512
333 327 332 mpbir 512 1 = 511
334 333 a1i φ 512 1 = 511
335 324 334 eqtr2d φ 511 = 2 9 1
336 279 295 335 3brtr3d φ 3 3 3 1 1 3 2 1 < 2 9 1
337 216 ltm1d φ 2 9 1 < 2 9
338 215 nn0zd φ 9
339 73 338 143 35 leexp2d φ 9 log 2 3 5 2 9 2 log 2 3 5
340 87 339 mpbid φ 2 9 2 log 2 3 5
341 217 216 224 337 340 ltletrd φ 2 9 1 < 2 log 2 3 5
342 213 217 224 336 341 lttrd φ 3 3 3 1 1 3 2 1 < 2 log 2 3 5
343 204 342 eqbrtrd φ 3 log 2 log 2 3 5 k = 1 log 2 3 2 3 k 1 < 2 log 2 3 5
344 343 adantr φ 3 = N 3 log 2 log 2 3 5 k = 1 log 2 3 2 3 k 1 < 2 log 2 3 5
345 30 344 eqbrtrd φ 3 = N 3 log 2 log 2 3 5 k = 1 log 2 3 2 N k 1 < 2 log 2 3 5
346 simpr φ 3 = N 3 = N
347 oveq2 3 = N log 2 3 = log 2 N
348 347 adantl φ 3 = N log 2 3 = log 2 N
349 348 oveq1d φ 3 = N log 2 3 5 = log 2 N 5
350 349 fveq2d φ 3 = N log 2 3 5 = log 2 N 5
351 3 a1i φ 3 = N B = log 2 N 5
352 351 eqcomd φ 3 = N log 2 N 5 = B
353 350 352 eqtrd φ 3 = N log 2 3 5 = B
354 353 oveq2d φ 3 = N log 2 log 2 3 5 = log 2 B
355 354 fveq2d φ 3 = N log 2 log 2 3 5 = log 2 B
356 346 355 oveq12d φ 3 = N 3 log 2 log 2 3 5 = N log 2 B
357 346 oveq2d φ 3 = N log 2 3 = log 2 N
358 357 oveq1d φ 3 = N log 2 3 2 = log 2 N 2
359 358 fveq2d φ 3 = N log 2 3 2 = log 2 N 2
360 359 oveq2d φ 3 = N 1 log 2 3 2 = 1 log 2 N 2
361 360 prodeq1d φ 3 = N k = 1 log 2 3 2 N k 1 = k = 1 log 2 N 2 N k 1
362 356 361 oveq12d φ 3 = N 3 log 2 log 2 3 5 k = 1 log 2 3 2 N k 1 = N log 2 B k = 1 log 2 N 2 N k 1
363 350 oveq2d φ 3 = N 2 log 2 3 5 = 2 log 2 N 5
364 345 362 363 3brtr3d φ 3 = N N log 2 B k = 1 log 2 N 2 N k 1 < 2 log 2 N 5
365 2 a1i φ 3 = N A = N log 2 B k = 1 log 2 N 2 N k 1
366 365 eqcomd φ 3 = N N log 2 B k = 1 log 2 N 2 N k 1 = A
367 3 oveq2i 2 B = 2 log 2 N 5
368 367 a1i φ 3 = N 2 B = 2 log 2 N 5
369 368 eqcomd φ 3 = N 2 log 2 N 5 = 2 B
370 364 366 369 3brtr3d φ 3 = N A < 2 B
371 370 ex φ 3 = N A < 2 B
372 eluzle N 3 3 N
373 1 372 syl φ 3 N
374 14 zred φ N
375 55 374 leloed φ 3 N 3 < N 3 = N
376 373 375 mpbid φ 3 < N 3 = N
377 23 371 376 mpjaod φ A < 2 B