Metamath Proof Explorer


Theorem algextdeglem6

Description: Lemma for algextdeg . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K=E𝑠F
algextdeg.l No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |-
algextdeg.d D=deg1E
algextdeg.m No typesetting found for |- M = ( E minPoly F ) with typecode |-
algextdeg.f φEField
algextdeg.e φFSubDRingE
algextdeg.a φAEIntgRingF
algextdeglem.o O=EevalSub1F
algextdeglem.y P=Poly1K
algextdeglem.u U=BaseP
algextdeglem.g G=pUOpA
algextdeglem.n N=xUxP~QGZ
algextdeglem.z Z=G-10L
algextdeglem.q Q=P/𝑠P~QGZ
algextdeglem.j J=pBaseQGp
algextdeglem.r R=rem1pK
algextdeglem.h H=pUpRMA
Assertion algextdeglem6 φdimQ=dimH𝑠P

Proof

Step Hyp Ref Expression
1 algextdeg.k K=E𝑠F
2 algextdeg.l Could not format L = ( E |`s ( E fldGen ( F u. { A } ) ) ) : No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |-
3 algextdeg.d D=deg1E
4 algextdeg.m Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
5 algextdeg.f φEField
6 algextdeg.e φFSubDRingE
7 algextdeg.a φAEIntgRingF
8 algextdeglem.o O=EevalSub1F
9 algextdeglem.y P=Poly1K
10 algextdeglem.u U=BaseP
11 algextdeglem.g G=pUOpA
12 algextdeglem.n N=xUxP~QGZ
13 algextdeglem.z Z=G-10L
14 algextdeglem.q Q=P/𝑠P~QGZ
15 algextdeglem.j J=pBaseQGp
16 algextdeglem.r R=rem1pK
17 algextdeglem.h H=pUpRMA
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 algextdeglem5 φZ=RSpanPMA
19 sdrgsubrg FSubDRingEFSubRingE
20 6 19 syl φFSubRingE
21 1 subrgring FSubRingEKRing
22 20 21 syl φKRing
23 9 ply1ring KRingPRing
24 22 23 syl φPRing
25 1 fveq2i Poly1K=Poly1E𝑠F
26 9 25 eqtri P=Poly1E𝑠F
27 eqid BaseE=BaseE
28 eqid 0E=0E
29 5 fldcrngd φECRing
30 8 1 27 28 29 20 irngssv φEIntgRingFBaseE
31 30 7 sseldd φABaseE
32 eqid pdomO|OpA=0E=pdomO|OpA=0E
33 eqid RSpanP=RSpanP
34 eqid idlGen1pE𝑠F=idlGen1pE𝑠F
35 8 26 27 5 6 31 28 32 33 34 4 minplycl φMABaseP
36 35 10 eleqtrrdi φMAU
37 eqid rP=rP
38 10 33 37 rspsn PRingMAURSpanPMA=p|MArPp
39 24 36 38 syl2anc φRSpanPMA=p|MArPp
40 nfv pφ
41 nfab1 _pp|MArPp
42 nfrab1 _ppU|Hp=0P
43 10 37 dvdsrcl2 PRingMArPppU
44 43 ex PRingMArPppU
45 44 pm4.71rd PRingMArPppUMArPp
46 24 45 syl φMArPppUMArPp
47 22 adantr φpUKRing
48 simpr φpUpU
49 eqid 0Poly1E=0Poly1E
50 1 fveq2i Monic1pK=Monic1pE𝑠F
51 49 5 6 4 7 50 minplym1p φMAMonic1pK
52 eqid Unic1pK=Unic1pK
53 eqid Monic1pK=Monic1pK
54 52 53 mon1puc1p KRingMAMonic1pKMAUnic1pK
55 22 51 54 syl2anc φMAUnic1pK
56 55 adantr φpUMAUnic1pK
57 eqid 0P=0P
58 9 37 10 52 57 16 dvdsr1p KRingpUMAUnic1pKMArPppRMA=0P
59 47 48 56 58 syl3anc φpUMArPppRMA=0P
60 ovexd φpUpRMAV
61 17 fvmpt2 pUpRMAVHp=pRMA
62 48 60 61 syl2anc φpUHp=pRMA
63 62 eqeq1d φpUHp=0PpRMA=0P
64 59 63 bitr4d φpUMArPpHp=0P
65 64 pm5.32da φpUMArPppUHp=0P
66 46 65 bitrd φMArPppUHp=0P
67 abid pp|MArPpMArPp
68 rabid ppU|Hp=0PpUHp=0P
69 66 67 68 3bitr4g φpp|MArPpppU|Hp=0P
70 40 41 42 69 eqrd φp|MArPp=pU|Hp=0P
71 40 60 17 fnmptd φHFnU
72 fniniseg2 HFnUH-10P=pU|Hp=0P
73 71 72 syl φH-10P=pU|Hp=0P
74 70 73 eqtr4d φp|MArPp=H-10P
75 18 39 74 3eqtrd φZ=H-10P
76 75 oveq2d φP~QGZ=P~QGH-10P
77 76 oveq2d φP/𝑠P~QGZ=P/𝑠P~QGH-10P
78 14 77 eqtrid φQ=P/𝑠P~QGH-10P
79 eqid H-10P=H-10P
80 eqid P/𝑠P~QGH-10P=P/𝑠P~QGH-10P
81 9 10 16 52 17 22 55 57 79 80 r1pquslmic φP/𝑠P~QGH-10P𝑚H𝑠P
82 78 81 eqbrtrd φQ𝑚H𝑠P
83 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 algextdeglem3 φQLVec
84 82 83 lmicdim φdimQ=dimH𝑠P