Description: Lemma for algextdeg . (Contributed by Thierry Arnoux, 2-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | algextdeg.k | |
|
algextdeg.l | No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |- | ||
algextdeg.d | |
||
algextdeg.m | No typesetting found for |- M = ( E minPoly F ) with typecode |- | ||
algextdeg.f | |
||
algextdeg.e | |
||
algextdeg.a | |
||
algextdeglem.o | |
||
algextdeglem.y | |
||
algextdeglem.u | |
||
algextdeglem.g | |
||
algextdeglem.n | |
||
algextdeglem.z | |
||
algextdeglem.q | |
||
algextdeglem.j | |
||
algextdeglem.r | |
||
algextdeglem.h | |
||
Assertion | algextdeglem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | algextdeg.k | |
|
2 | algextdeg.l | Could not format L = ( E |`s ( E fldGen ( F u. { A } ) ) ) : No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |- | |
3 | algextdeg.d | |
|
4 | algextdeg.m | Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |- | |
5 | algextdeg.f | |
|
6 | algextdeg.e | |
|
7 | algextdeg.a | |
|
8 | algextdeglem.o | |
|
9 | algextdeglem.y | |
|
10 | algextdeglem.u | |
|
11 | algextdeglem.g | |
|
12 | algextdeglem.n | |
|
13 | algextdeglem.z | |
|
14 | algextdeglem.q | |
|
15 | algextdeglem.j | |
|
16 | algextdeglem.r | |
|
17 | algextdeglem.h | |
|
18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | algextdeglem5 | |
19 | sdrgsubrg | |
|
20 | 6 19 | syl | |
21 | 1 | subrgring | |
22 | 20 21 | syl | |
23 | 9 | ply1ring | |
24 | 22 23 | syl | |
25 | 1 | fveq2i | |
26 | 9 25 | eqtri | |
27 | eqid | |
|
28 | eqid | |
|
29 | 5 | fldcrngd | |
30 | 8 1 27 28 29 20 | irngssv | |
31 | 30 7 | sseldd | |
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | 8 26 27 5 6 31 28 32 33 34 4 | minplycl | |
36 | 35 10 | eleqtrrdi | |
37 | eqid | |
|
38 | 10 33 37 | rspsn | |
39 | 24 36 38 | syl2anc | |
40 | nfv | |
|
41 | nfab1 | |
|
42 | nfrab1 | |
|
43 | 10 37 | dvdsrcl2 | |
44 | 43 | ex | |
45 | 44 | pm4.71rd | |
46 | 24 45 | syl | |
47 | 22 | adantr | |
48 | simpr | |
|
49 | eqid | |
|
50 | 1 | fveq2i | |
51 | 49 5 6 4 7 50 | minplym1p | |
52 | eqid | |
|
53 | eqid | |
|
54 | 52 53 | mon1puc1p | |
55 | 22 51 54 | syl2anc | |
56 | 55 | adantr | |
57 | eqid | |
|
58 | 9 37 10 52 57 16 | dvdsr1p | |
59 | 47 48 56 58 | syl3anc | |
60 | ovexd | |
|
61 | 17 | fvmpt2 | |
62 | 48 60 61 | syl2anc | |
63 | 62 | eqeq1d | |
64 | 59 63 | bitr4d | |
65 | 64 | pm5.32da | |
66 | 46 65 | bitrd | |
67 | abid | |
|
68 | rabid | |
|
69 | 66 67 68 | 3bitr4g | |
70 | 40 41 42 69 | eqrd | |
71 | 40 60 17 | fnmptd | |
72 | fniniseg2 | |
|
73 | 71 72 | syl | |
74 | 70 73 | eqtr4d | |
75 | 18 39 74 | 3eqtrd | |
76 | 75 | oveq2d | |
77 | 76 | oveq2d | |
78 | 14 77 | eqtrid | |
79 | eqid | |
|
80 | eqid | |
|
81 | 9 10 16 52 17 22 55 57 79 80 | r1pquslmic | |
82 | 78 81 | eqbrtrd | |
83 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | algextdeglem3 | |
84 | 82 83 | lmicdim | |