Metamath Proof Explorer


Theorem bpoly3

Description: The Bernoulli polynomials at three. (Contributed by Scott Fenton, 8-Jul-2015)

Ref Expression
Assertion bpoly3 X3BernPolyX=X3-32X2+12X

Proof

Step Hyp Ref Expression
1 3nn0 30
2 bpolyval 30X3BernPolyX=X3k=031(3k)kBernPolyX3-k+1
3 1 2 mpan X3BernPolyX=X3k=031(3k)kBernPolyX3-k+1
4 3m1e2 31=2
5 df-2 2=1+1
6 4 5 eqtri 31=1+1
7 6 oveq2i 031=01+1
8 7 sumeq1i k=031(3k)kBernPolyX3-k+1=k=01+1(3k)kBernPolyX3-k+1
9 1eluzge0 10
10 9 a1i X10
11 0z 0
12 fzpr 000+1=00+1
13 11 12 ax-mp 00+1=00+1
14 0p1e1 0+1=1
15 14 oveq2i 00+1=01
16 14 preq2i 00+1=01
17 13 15 16 3eqtr3ri 01=01
18 5 sneqi 2=1+1
19 17 18 uneq12i 012=011+1
20 df-tp 012=012
21 fzsuc 1001+1=011+1
22 9 21 ax-mp 01+1=011+1
23 19 20 22 3eqtr4ri 01+1=012
24 23 eleq2i k01+1k012
25 vex kV
26 25 eltp k012k=0k=1k=2
27 24 26 bitri k01+1k=0k=1k=2
28 oveq2 k=0(3k)=(30)
29 bcn0 30(30)=1
30 1 29 ax-mp (30)=1
31 28 30 eqtrdi k=0(3k)=1
32 oveq1 k=0kBernPolyX=0BernPolyX
33 oveq2 k=03k=30
34 33 oveq1d k=03-k+1=3-0+1
35 3cn 3
36 35 subid1i 30=3
37 36 oveq1i 3-0+1=3+1
38 df-4 4=3+1
39 37 38 eqtr4i 3-0+1=4
40 34 39 eqtrdi k=03-k+1=4
41 32 40 oveq12d k=0kBernPolyX3-k+1=0BernPolyX4
42 31 41 oveq12d k=0(3k)kBernPolyX3-k+1=10BernPolyX4
43 bpoly0 X0BernPolyX=1
44 43 oveq1d X0BernPolyX4=14
45 44 oveq2d X10BernPolyX4=114
46 4cn 4
47 4ne0 40
48 46 47 reccli 14
49 48 mullidi 114=14
50 45 49 eqtrdi X10BernPolyX4=14
51 42 50 sylan9eqr Xk=0(3k)kBernPolyX3-k+1=14
52 51 48 eqeltrdi Xk=0(3k)kBernPolyX3-k+1
53 oveq2 k=1(3k)=(31)
54 bcn1 30(31)=3
55 1 54 ax-mp (31)=3
56 53 55 eqtrdi k=1(3k)=3
57 oveq1 k=1kBernPolyX=1BernPolyX
58 oveq2 k=13k=31
59 58 oveq1d k=13-k+1=3-1+1
60 ax-1cn 1
61 npcan 313-1+1=3
62 35 60 61 mp2an 3-1+1=3
63 59 62 eqtrdi k=13-k+1=3
64 57 63 oveq12d k=1kBernPolyX3-k+1=1BernPolyX3
65 56 64 oveq12d k=1(3k)kBernPolyX3-k+1=31BernPolyX3
66 bpoly1 X1BernPolyX=X12
67 66 oveq1d X1BernPolyX3=X123
68 67 oveq2d X31BernPolyX3=3X123
69 halfcn 12
70 subcl X12X12
71 69 70 mpan2 XX12
72 3ne0 30
73 divcan2 X123303X123=X12
74 35 72 73 mp3an23 X123X123=X12
75 71 74 syl X3X123=X12
76 68 75 eqtrd X31BernPolyX3=X12
77 65 76 sylan9eqr Xk=1(3k)kBernPolyX3-k+1=X12
78 71 adantr Xk=1X12
79 77 78 eqeltrd Xk=1(3k)kBernPolyX3-k+1
80 oveq2 k=2(3k)=(32)
81 bcn2 30(32)=3312
82 1 81 ax-mp (32)=3312
83 4 oveq2i 331=32
84 83 oveq1i 3312=322
85 2cn 2
86 2ne0 20
87 35 85 86 divcan4i 322=3
88 84 87 eqtri 3312=3
89 82 88 eqtri (32)=3
90 80 89 eqtrdi k=2(3k)=3
91 oveq1 k=2kBernPolyX=2BernPolyX
92 oveq2 k=23k=32
93 92 oveq1d k=23-k+1=3-2+1
94 2p1e3 2+1=3
95 35 85 60 94 subaddrii 32=1
96 95 oveq1i 3-2+1=1+1
97 96 5 eqtr4i 3-2+1=2
98 93 97 eqtrdi k=23-k+1=2
99 91 98 oveq12d k=2kBernPolyX3-k+1=2BernPolyX2
100 90 99 oveq12d k=2(3k)kBernPolyX3-k+1=32BernPolyX2
101 2nn0 20
102 bpolycl 20X2BernPolyX
103 101 102 mpan X2BernPolyX
104 2cnne0 220
105 div12 32BernPolyX22032BernPolyX2=2BernPolyX32
106 35 104 105 mp3an13 2BernPolyX32BernPolyX2=2BernPolyX32
107 103 106 syl X32BernPolyX2=2BernPolyX32
108 35 85 86 divcli 32
109 mulcom 2BernPolyX322BernPolyX32=322BernPolyX
110 103 108 109 sylancl X2BernPolyX32=322BernPolyX
111 bpoly2 X2BernPolyX=X2-X+16
112 111 oveq2d X322BernPolyX=32X2-X+16
113 sqcl XX2
114 6cn 6
115 6re 6
116 6pos 0<6
117 115 116 gt0ne0ii 60
118 114 117 reccli 16
119 subsub X2X16X2X16=X2-X+16
120 118 119 mp3an3 X2XX2X16=X2-X+16
121 113 120 mpancom XX2X16=X2-X+16
122 121 oveq2d X32X2X16=32X2-X+16
123 subcl X16X16
124 118 123 mpan2 XX16
125 subdi 32X2X1632X2X16=32X232X16
126 108 113 124 125 mp3an2i X32X2X16=32X232X16
127 112 122 126 3eqtr2d X322BernPolyX=32X232X16
128 107 110 127 3eqtrd X32BernPolyX2=32X232X16
129 100 128 sylan9eqr Xk=2(3k)kBernPolyX3-k+1=32X232X16
130 mulcl 32X232X2
131 108 113 130 sylancr X32X2
132 mulcl 32X1632X16
133 108 124 132 sylancr X32X16
134 131 133 subcld X32X232X16
135 134 adantr Xk=232X232X16
136 129 135 eqeltrd Xk=2(3k)kBernPolyX3-k+1
137 52 79 136 3jaodan Xk=0k=1k=2(3k)kBernPolyX3-k+1
138 27 137 sylan2b Xk01+1(3k)kBernPolyX3-k+1
139 5 eqeq2i k=2k=1+1
140 139 100 sylbir k=1+1(3k)kBernPolyX3-k+1=32BernPolyX2
141 10 138 140 fsump1 Xk=01+1(3k)kBernPolyX3-k+1=k=01(3k)kBernPolyX3-k+1+32BernPolyX2
142 128 oveq2d Xk=01(3k)kBernPolyX3-k+1+32BernPolyX2=k=01(3k)kBernPolyX3-k+1+32X2-32X16
143 15 sumeq1i k=00+1(3k)kBernPolyX3-k+1=k=01(3k)kBernPolyX3-k+1
144 0nn0 00
145 nn0uz 0=0
146 144 145 eleqtri 00
147 146 a1i X00
148 13 16 eqtri 00+1=01
149 148 eleq2i k00+1k01
150 25 elpr k01k=0k=1
151 149 150 bitri k00+1k=0k=1
152 52 79 jaodan Xk=0k=1(3k)kBernPolyX3-k+1
153 151 152 sylan2b Xk00+1(3k)kBernPolyX3-k+1
154 14 eqeq2i k=0+1k=1
155 154 65 sylbi k=0+1(3k)kBernPolyX3-k+1=31BernPolyX3
156 147 153 155 fsump1 Xk=00+1(3k)kBernPolyX3-k+1=k=00(3k)kBernPolyX3-k+1+31BernPolyX3
157 50 48 eqeltrdi X10BernPolyX4
158 42 fsum1 010BernPolyX4k=00(3k)kBernPolyX3-k+1=10BernPolyX4
159 11 157 158 sylancr Xk=00(3k)kBernPolyX3-k+1=10BernPolyX4
160 159 50 eqtrd Xk=00(3k)kBernPolyX3-k+1=14
161 160 76 oveq12d Xk=00(3k)kBernPolyX3-k+1+31BernPolyX3=14+X-12
162 156 161 eqtrd Xk=00+1(3k)kBernPolyX3-k+1=14+X-12
163 143 162 eqtr3id Xk=01(3k)kBernPolyX3-k+1=14+X-12
164 163 oveq1d Xk=01(3k)kBernPolyX3-k+1+32X2-32X16=14+X12+32X232X16
165 addcl 14X1214+X-12
166 48 71 165 sylancr X14+X-12
167 166 131 133 addsub12d X14+X12+32X232X16=32X2+14+X-12-32X16
168 164 167 eqtrd Xk=01(3k)kBernPolyX3-k+1+32X2-32X16=32X2+14+X-12-32X16
169 133 166 negsubdi2d X32X1614+X-12=14+X12-32X16
170 subdi 32X1632X16=32X3216
171 108 118 170 mp3an13 X32X16=32X3216
172 addsub12 14X1214+X-12=X+14-12
173 48 69 172 mp3an13 X14+X-12=X+14-12
174 171 173 oveq12d X32X1614+X-12=32X-3216-X+14-12
175 mulcl 32X32X
176 108 175 mpan X32X
177 108 118 mulcli 3216
178 negsub 32X321632X+3216=32X3216
179 176 177 178 sylancl X32X+3216=32X3216
180 179 oveq1d X32X+3216-X+14-12=32X-3216-X+14-12
181 69 48 negsubdi2i 1214=1412
182 85 35 85 mul12i 232=322
183 3t2e6 32=6
184 183 oveq2i 232=26
185 2t2e4 22=4
186 185 oveq2i 322=34
187 182 184 186 3eqtr3i 26=34
188 187 oveq2i 3126=3134
189 46 47 pm3.2i 440
190 35 72 pm3.2i 330
191 divcan5 14403303134=14
192 60 189 190 191 mp3an 3134=14
193 188 192 eqtri 3126=14
194 35 85 60 114 86 117 divmuldivi 3216=3126
195 2t1e2 21=2
196 195 5 eqtri 21=1+1
197 196 185 oveq12i 2122=1+14
198 divcan5 12202202122=12
199 60 104 104 198 mp3an 2122=12
200 60 60 46 47 divdiri 1+14=14+14
201 197 199 200 3eqtr3ri 14+14=12
202 69 48 48 201 subaddrii 1214=14
203 193 194 202 3eqtr4ri 1214=3216
204 203 negeqi 1214=3216
205 181 204 eqtr3i 1412=3216
206 48 69 subcli 1412
207 177 negcli 3216
208 206 207 subeq0i 14-12-3216=01412=3216
209 205 208 mpbir 14-12-3216=0
210 209 oveq2i 32X-X-14-12-3216=32X-X-0
211 id XX
212 206 a1i X1412
213 207 a1i X3216
214 176 211 212 213 subadd4d X32X-X-14-12-3216=32X+3216-X+14-12
215 subdir 321X321X=32X1X
216 108 60 215 mp3an12 X321X=32X1X
217 divsubdir 32220322=3222
218 35 85 104 217 mp3an 322=3222
219 95 oveq1i 322=12
220 2div2e1 22=1
221 220 oveq2i 3222=321
222 218 219 221 3eqtr3ri 321=12
223 222 oveq1i 321X=12X
224 223 a1i X321X=12X
225 mullid X1X=X
226 225 oveq2d X32X1X=32XX
227 216 224 226 3eqtr3rd X32XX=12X
228 227 oveq1d X32X-X-0=12X0
229 mulcl 12X12X
230 69 229 mpan X12X
231 230 subid1d X12X0=12X
232 228 231 eqtrd X32X-X-0=12X
233 210 214 232 3eqtr3a X32X+3216-X+14-12=12X
234 174 180 233 3eqtr2d X32X1614+X-12=12X
235 234 negeqd X32X1614+X-12=12X
236 169 235 eqtr3d X14+X12-32X16=12X
237 236 oveq2d X32X2+14+X-12-32X16=32X2+12X
238 131 230 negsubd X32X2+12X=32X212X
239 168 237 238 3eqtrd Xk=01(3k)kBernPolyX3-k+1+32X2-32X16=32X212X
240 141 142 239 3eqtrd Xk=01+1(3k)kBernPolyX3-k+1=32X212X
241 8 240 eqtrid Xk=031(3k)kBernPolyX3-k+1=32X212X
242 241 oveq2d XX3k=031(3k)kBernPolyX3-k+1=X332X212X
243 expcl X30X3
244 1 243 mpan2 XX3
245 244 131 230 subsubd XX332X212X=X3-32X2+12X
246 3 242 245 3eqtrd X3BernPolyX=X3-32X2+12X