Database
REAL AND COMPLEX NUMBERS
Elementary limits and convergence
Bernoulli polynomials and sums of k-th powers
bpoly3
Next ⟩
bpoly4
Metamath Proof Explorer
Ascii
Unicode
Theorem
bpoly3
Description:
The Bernoulli polynomials at three.
(Contributed by
Scott Fenton
, 8-Jul-2015)
Ref
Expression
Assertion
bpoly3
⊢
X
∈
ℂ
→
3
BernPoly
X
=
X
3
-
3
2
X
2
+
1
2
X
Proof
Step
Hyp
Ref
Expression
1
3nn0
⊢
3
∈
ℕ
0
2
bpolyval
⊢
3
∈
ℕ
0
∧
X
∈
ℂ
→
3
BernPoly
X
=
X
3
−
∑
k
=
0
3
−
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
3
1
2
mpan
⊢
X
∈
ℂ
→
3
BernPoly
X
=
X
3
−
∑
k
=
0
3
−
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
4
3m1e2
⊢
3
−
1
=
2
5
df-2
⊢
2
=
1
+
1
6
4
5
eqtri
⊢
3
−
1
=
1
+
1
7
6
oveq2i
⊢
0
…
3
−
1
=
0
…
1
+
1
8
7
sumeq1i
⊢
∑
k
=
0
3
−
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
∑
k
=
0
1
+
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
9
1eluzge0
⊢
1
∈
ℤ
≥
0
10
9
a1i
⊢
X
∈
ℂ
→
1
∈
ℤ
≥
0
11
0z
⊢
0
∈
ℤ
12
fzpr
⊢
0
∈
ℤ
→
0
…
0
+
1
=
0
0
+
1
13
11
12
ax-mp
⊢
0
…
0
+
1
=
0
0
+
1
14
0p1e1
⊢
0
+
1
=
1
15
14
oveq2i
⊢
0
…
0
+
1
=
0
…
1
16
14
preq2i
⊢
0
0
+
1
=
0
1
17
13
15
16
3eqtr3ri
⊢
0
1
=
0
…
1
18
5
sneqi
⊢
2
=
1
+
1
19
17
18
uneq12i
⊢
0
1
∪
2
=
0
…
1
∪
1
+
1
20
df-tp
⊢
0
1
2
=
0
1
∪
2
21
fzsuc
⊢
1
∈
ℤ
≥
0
→
0
…
1
+
1
=
0
…
1
∪
1
+
1
22
9
21
ax-mp
⊢
0
…
1
+
1
=
0
…
1
∪
1
+
1
23
19
20
22
3eqtr4ri
⊢
0
…
1
+
1
=
0
1
2
24
23
eleq2i
⊢
k
∈
0
…
1
+
1
↔
k
∈
0
1
2
25
vex
⊢
k
∈
V
26
25
eltp
⊢
k
∈
0
1
2
↔
k
=
0
∨
k
=
1
∨
k
=
2
27
24
26
bitri
⊢
k
∈
0
…
1
+
1
↔
k
=
0
∨
k
=
1
∨
k
=
2
28
oveq2
⊢
k
=
0
→
(
3
k
)
=
(
3
0
)
29
bcn0
⊢
3
∈
ℕ
0
→
(
3
0
)
=
1
30
1
29
ax-mp
⊢
(
3
0
)
=
1
31
28
30
eqtrdi
⊢
k
=
0
→
(
3
k
)
=
1
32
oveq1
⊢
k
=
0
→
k
BernPoly
X
=
0
BernPoly
X
33
oveq2
⊢
k
=
0
→
3
−
k
=
3
−
0
34
33
oveq1d
⊢
k
=
0
→
3
-
k
+
1
=
3
-
0
+
1
35
3cn
⊢
3
∈
ℂ
36
35
subid1i
⊢
3
−
0
=
3
37
36
oveq1i
⊢
3
-
0
+
1
=
3
+
1
38
df-4
⊢
4
=
3
+
1
39
37
38
eqtr4i
⊢
3
-
0
+
1
=
4
40
34
39
eqtrdi
⊢
k
=
0
→
3
-
k
+
1
=
4
41
32
40
oveq12d
⊢
k
=
0
→
k
BernPoly
X
3
-
k
+
1
=
0
BernPoly
X
4
42
31
41
oveq12d
⊢
k
=
0
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
1
0
BernPoly
X
4
43
bpoly0
⊢
X
∈
ℂ
→
0
BernPoly
X
=
1
44
43
oveq1d
⊢
X
∈
ℂ
→
0
BernPoly
X
4
=
1
4
45
44
oveq2d
⊢
X
∈
ℂ
→
1
0
BernPoly
X
4
=
1
1
4
46
4cn
⊢
4
∈
ℂ
47
4ne0
⊢
4
≠
0
48
46
47
reccli
⊢
1
4
∈
ℂ
49
48
mullidi
⊢
1
1
4
=
1
4
50
45
49
eqtrdi
⊢
X
∈
ℂ
→
1
0
BernPoly
X
4
=
1
4
51
42
50
sylan9eqr
⊢
X
∈
ℂ
∧
k
=
0
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
1
4
52
51
48
eqeltrdi
⊢
X
∈
ℂ
∧
k
=
0
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
∈
ℂ
53
oveq2
⊢
k
=
1
→
(
3
k
)
=
(
3
1
)
54
bcn1
⊢
3
∈
ℕ
0
→
(
3
1
)
=
3
55
1
54
ax-mp
⊢
(
3
1
)
=
3
56
53
55
eqtrdi
⊢
k
=
1
→
(
3
k
)
=
3
57
oveq1
⊢
k
=
1
→
k
BernPoly
X
=
1
BernPoly
X
58
oveq2
⊢
k
=
1
→
3
−
k
=
3
−
1
59
58
oveq1d
⊢
k
=
1
→
3
-
k
+
1
=
3
-
1
+
1
60
ax-1cn
⊢
1
∈
ℂ
61
npcan
⊢
3
∈
ℂ
∧
1
∈
ℂ
→
3
-
1
+
1
=
3
62
35
60
61
mp2an
⊢
3
-
1
+
1
=
3
63
59
62
eqtrdi
⊢
k
=
1
→
3
-
k
+
1
=
3
64
57
63
oveq12d
⊢
k
=
1
→
k
BernPoly
X
3
-
k
+
1
=
1
BernPoly
X
3
65
56
64
oveq12d
⊢
k
=
1
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
3
1
BernPoly
X
3
66
bpoly1
⊢
X
∈
ℂ
→
1
BernPoly
X
=
X
−
1
2
67
66
oveq1d
⊢
X
∈
ℂ
→
1
BernPoly
X
3
=
X
−
1
2
3
68
67
oveq2d
⊢
X
∈
ℂ
→
3
1
BernPoly
X
3
=
3
X
−
1
2
3
69
halfcn
⊢
1
2
∈
ℂ
70
subcl
⊢
X
∈
ℂ
∧
1
2
∈
ℂ
→
X
−
1
2
∈
ℂ
71
69
70
mpan2
⊢
X
∈
ℂ
→
X
−
1
2
∈
ℂ
72
3ne0
⊢
3
≠
0
73
divcan2
⊢
X
−
1
2
∈
ℂ
∧
3
∈
ℂ
∧
3
≠
0
→
3
X
−
1
2
3
=
X
−
1
2
74
35
72
73
mp3an23
⊢
X
−
1
2
∈
ℂ
→
3
X
−
1
2
3
=
X
−
1
2
75
71
74
syl
⊢
X
∈
ℂ
→
3
X
−
1
2
3
=
X
−
1
2
76
68
75
eqtrd
⊢
X
∈
ℂ
→
3
1
BernPoly
X
3
=
X
−
1
2
77
65
76
sylan9eqr
⊢
X
∈
ℂ
∧
k
=
1
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
X
−
1
2
78
71
adantr
⊢
X
∈
ℂ
∧
k
=
1
→
X
−
1
2
∈
ℂ
79
77
78
eqeltrd
⊢
X
∈
ℂ
∧
k
=
1
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
∈
ℂ
80
oveq2
⊢
k
=
2
→
(
3
k
)
=
(
3
2
)
81
bcn2
⊢
3
∈
ℕ
0
→
(
3
2
)
=
3
3
−
1
2
82
1
81
ax-mp
⊢
(
3
2
)
=
3
3
−
1
2
83
4
oveq2i
⊢
3
3
−
1
=
3
⋅
2
84
83
oveq1i
⊢
3
3
−
1
2
=
3
⋅
2
2
85
2cn
⊢
2
∈
ℂ
86
2ne0
⊢
2
≠
0
87
35
85
86
divcan4i
⊢
3
⋅
2
2
=
3
88
84
87
eqtri
⊢
3
3
−
1
2
=
3
89
82
88
eqtri
⊢
(
3
2
)
=
3
90
80
89
eqtrdi
⊢
k
=
2
→
(
3
k
)
=
3
91
oveq1
⊢
k
=
2
→
k
BernPoly
X
=
2
BernPoly
X
92
oveq2
⊢
k
=
2
→
3
−
k
=
3
−
2
93
92
oveq1d
⊢
k
=
2
→
3
-
k
+
1
=
3
-
2
+
1
94
2p1e3
⊢
2
+
1
=
3
95
35
85
60
94
subaddrii
⊢
3
−
2
=
1
96
95
oveq1i
⊢
3
-
2
+
1
=
1
+
1
97
96
5
eqtr4i
⊢
3
-
2
+
1
=
2
98
93
97
eqtrdi
⊢
k
=
2
→
3
-
k
+
1
=
2
99
91
98
oveq12d
⊢
k
=
2
→
k
BernPoly
X
3
-
k
+
1
=
2
BernPoly
X
2
100
90
99
oveq12d
⊢
k
=
2
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
3
2
BernPoly
X
2
101
2nn0
⊢
2
∈
ℕ
0
102
bpolycl
⊢
2
∈
ℕ
0
∧
X
∈
ℂ
→
2
BernPoly
X
∈
ℂ
103
101
102
mpan
⊢
X
∈
ℂ
→
2
BernPoly
X
∈
ℂ
104
2cnne0
⊢
2
∈
ℂ
∧
2
≠
0
105
div12
⊢
3
∈
ℂ
∧
2
BernPoly
X
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
3
2
BernPoly
X
2
=
2
BernPoly
X
3
2
106
35
104
105
mp3an13
⊢
2
BernPoly
X
∈
ℂ
→
3
2
BernPoly
X
2
=
2
BernPoly
X
3
2
107
103
106
syl
⊢
X
∈
ℂ
→
3
2
BernPoly
X
2
=
2
BernPoly
X
3
2
108
35
85
86
divcli
⊢
3
2
∈
ℂ
109
mulcom
⊢
2
BernPoly
X
∈
ℂ
∧
3
2
∈
ℂ
→
2
BernPoly
X
3
2
=
3
2
2
BernPoly
X
110
103
108
109
sylancl
⊢
X
∈
ℂ
→
2
BernPoly
X
3
2
=
3
2
2
BernPoly
X
111
bpoly2
⊢
X
∈
ℂ
→
2
BernPoly
X
=
X
2
-
X
+
1
6
112
111
oveq2d
⊢
X
∈
ℂ
→
3
2
2
BernPoly
X
=
3
2
X
2
-
X
+
1
6
113
sqcl
⊢
X
∈
ℂ
→
X
2
∈
ℂ
114
6cn
⊢
6
∈
ℂ
115
6re
⊢
6
∈
ℝ
116
6pos
⊢
0
<
6
117
115
116
gt0ne0ii
⊢
6
≠
0
118
114
117
reccli
⊢
1
6
∈
ℂ
119
subsub
⊢
X
2
∈
ℂ
∧
X
∈
ℂ
∧
1
6
∈
ℂ
→
X
2
−
X
−
1
6
=
X
2
-
X
+
1
6
120
118
119
mp3an3
⊢
X
2
∈
ℂ
∧
X
∈
ℂ
→
X
2
−
X
−
1
6
=
X
2
-
X
+
1
6
121
113
120
mpancom
⊢
X
∈
ℂ
→
X
2
−
X
−
1
6
=
X
2
-
X
+
1
6
122
121
oveq2d
⊢
X
∈
ℂ
→
3
2
X
2
−
X
−
1
6
=
3
2
X
2
-
X
+
1
6
123
subcl
⊢
X
∈
ℂ
∧
1
6
∈
ℂ
→
X
−
1
6
∈
ℂ
124
118
123
mpan2
⊢
X
∈
ℂ
→
X
−
1
6
∈
ℂ
125
subdi
⊢
3
2
∈
ℂ
∧
X
2
∈
ℂ
∧
X
−
1
6
∈
ℂ
→
3
2
X
2
−
X
−
1
6
=
3
2
X
2
−
3
2
X
−
1
6
126
108
113
124
125
mp3an2i
⊢
X
∈
ℂ
→
3
2
X
2
−
X
−
1
6
=
3
2
X
2
−
3
2
X
−
1
6
127
112
122
126
3eqtr2d
⊢
X
∈
ℂ
→
3
2
2
BernPoly
X
=
3
2
X
2
−
3
2
X
−
1
6
128
107
110
127
3eqtrd
⊢
X
∈
ℂ
→
3
2
BernPoly
X
2
=
3
2
X
2
−
3
2
X
−
1
6
129
100
128
sylan9eqr
⊢
X
∈
ℂ
∧
k
=
2
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
3
2
X
2
−
3
2
X
−
1
6
130
mulcl
⊢
3
2
∈
ℂ
∧
X
2
∈
ℂ
→
3
2
X
2
∈
ℂ
131
108
113
130
sylancr
⊢
X
∈
ℂ
→
3
2
X
2
∈
ℂ
132
mulcl
⊢
3
2
∈
ℂ
∧
X
−
1
6
∈
ℂ
→
3
2
X
−
1
6
∈
ℂ
133
108
124
132
sylancr
⊢
X
∈
ℂ
→
3
2
X
−
1
6
∈
ℂ
134
131
133
subcld
⊢
X
∈
ℂ
→
3
2
X
2
−
3
2
X
−
1
6
∈
ℂ
135
134
adantr
⊢
X
∈
ℂ
∧
k
=
2
→
3
2
X
2
−
3
2
X
−
1
6
∈
ℂ
136
129
135
eqeltrd
⊢
X
∈
ℂ
∧
k
=
2
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
∈
ℂ
137
52
79
136
3jaodan
⊢
X
∈
ℂ
∧
k
=
0
∨
k
=
1
∨
k
=
2
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
∈
ℂ
138
27
137
sylan2b
⊢
X
∈
ℂ
∧
k
∈
0
…
1
+
1
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
∈
ℂ
139
5
eqeq2i
⊢
k
=
2
↔
k
=
1
+
1
140
139
100
sylbir
⊢
k
=
1
+
1
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
3
2
BernPoly
X
2
141
10
138
140
fsump1
⊢
X
∈
ℂ
→
∑
k
=
0
1
+
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
∑
k
=
0
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
+
3
2
BernPoly
X
2
142
128
oveq2d
⊢
X
∈
ℂ
→
∑
k
=
0
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
+
3
2
BernPoly
X
2
=
∑
k
=
0
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
+
3
2
X
2
-
3
2
X
−
1
6
143
15
sumeq1i
⊢
∑
k
=
0
0
+
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
∑
k
=
0
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
144
0nn0
⊢
0
∈
ℕ
0
145
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
146
144
145
eleqtri
⊢
0
∈
ℤ
≥
0
147
146
a1i
⊢
X
∈
ℂ
→
0
∈
ℤ
≥
0
148
13
16
eqtri
⊢
0
…
0
+
1
=
0
1
149
148
eleq2i
⊢
k
∈
0
…
0
+
1
↔
k
∈
0
1
150
25
elpr
⊢
k
∈
0
1
↔
k
=
0
∨
k
=
1
151
149
150
bitri
⊢
k
∈
0
…
0
+
1
↔
k
=
0
∨
k
=
1
152
52
79
jaodan
⊢
X
∈
ℂ
∧
k
=
0
∨
k
=
1
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
∈
ℂ
153
151
152
sylan2b
⊢
X
∈
ℂ
∧
k
∈
0
…
0
+
1
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
∈
ℂ
154
14
eqeq2i
⊢
k
=
0
+
1
↔
k
=
1
155
154
65
sylbi
⊢
k
=
0
+
1
→
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
3
1
BernPoly
X
3
156
147
153
155
fsump1
⊢
X
∈
ℂ
→
∑
k
=
0
0
+
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
∑
k
=
0
0
(
3
k
)
k
BernPoly
X
3
-
k
+
1
+
3
1
BernPoly
X
3
157
50
48
eqeltrdi
⊢
X
∈
ℂ
→
1
0
BernPoly
X
4
∈
ℂ
158
42
fsum1
⊢
0
∈
ℤ
∧
1
0
BernPoly
X
4
∈
ℂ
→
∑
k
=
0
0
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
1
0
BernPoly
X
4
159
11
157
158
sylancr
⊢
X
∈
ℂ
→
∑
k
=
0
0
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
1
0
BernPoly
X
4
160
159
50
eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
0
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
1
4
161
160
76
oveq12d
⊢
X
∈
ℂ
→
∑
k
=
0
0
(
3
k
)
k
BernPoly
X
3
-
k
+
1
+
3
1
BernPoly
X
3
=
1
4
+
X
-
1
2
162
156
161
eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
0
+
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
1
4
+
X
-
1
2
163
143
162
eqtr3id
⊢
X
∈
ℂ
→
∑
k
=
0
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
1
4
+
X
-
1
2
164
163
oveq1d
⊢
X
∈
ℂ
→
∑
k
=
0
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
+
3
2
X
2
-
3
2
X
−
1
6
=
1
4
+
X
−
1
2
+
3
2
X
2
−
3
2
X
−
1
6
165
addcl
⊢
1
4
∈
ℂ
∧
X
−
1
2
∈
ℂ
→
1
4
+
X
-
1
2
∈
ℂ
166
48
71
165
sylancr
⊢
X
∈
ℂ
→
1
4
+
X
-
1
2
∈
ℂ
167
166
131
133
addsub12d
⊢
X
∈
ℂ
→
1
4
+
X
−
1
2
+
3
2
X
2
−
3
2
X
−
1
6
=
3
2
X
2
+
1
4
+
X
-
1
2
-
3
2
X
−
1
6
168
164
167
eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
+
3
2
X
2
-
3
2
X
−
1
6
=
3
2
X
2
+
1
4
+
X
-
1
2
-
3
2
X
−
1
6
169
133
166
negsubdi2d
⊢
X
∈
ℂ
→
−
3
2
X
−
1
6
−
1
4
+
X
-
1
2
=
1
4
+
X
−
1
2
-
3
2
X
−
1
6
170
subdi
⊢
3
2
∈
ℂ
∧
X
∈
ℂ
∧
1
6
∈
ℂ
→
3
2
X
−
1
6
=
3
2
X
−
3
2
1
6
171
108
118
170
mp3an13
⊢
X
∈
ℂ
→
3
2
X
−
1
6
=
3
2
X
−
3
2
1
6
172
addsub12
⊢
1
4
∈
ℂ
∧
X
∈
ℂ
∧
1
2
∈
ℂ
→
1
4
+
X
-
1
2
=
X
+
1
4
-
1
2
173
48
69
172
mp3an13
⊢
X
∈
ℂ
→
1
4
+
X
-
1
2
=
X
+
1
4
-
1
2
174
171
173
oveq12d
⊢
X
∈
ℂ
→
3
2
X
−
1
6
−
1
4
+
X
-
1
2
=
3
2
X
-
3
2
1
6
-
X
+
1
4
-
1
2
175
mulcl
⊢
3
2
∈
ℂ
∧
X
∈
ℂ
→
3
2
X
∈
ℂ
176
108
175
mpan
⊢
X
∈
ℂ
→
3
2
X
∈
ℂ
177
108
118
mulcli
⊢
3
2
1
6
∈
ℂ
178
negsub
⊢
3
2
X
∈
ℂ
∧
3
2
1
6
∈
ℂ
→
3
2
X
+
−
3
2
1
6
=
3
2
X
−
3
2
1
6
179
176
177
178
sylancl
⊢
X
∈
ℂ
→
3
2
X
+
−
3
2
1
6
=
3
2
X
−
3
2
1
6
180
179
oveq1d
⊢
X
∈
ℂ
→
3
2
X
+
−
3
2
1
6
-
X
+
1
4
-
1
2
=
3
2
X
-
3
2
1
6
-
X
+
1
4
-
1
2
181
69
48
negsubdi2i
⊢
−
1
2
−
1
4
=
1
4
−
1
2
182
85
35
85
mul12i
⊢
2
3
⋅
2
=
3
2
⋅
2
183
3t2e6
⊢
3
⋅
2
=
6
184
183
oveq2i
⊢
2
3
⋅
2
=
2
⋅
6
185
2t2e4
⊢
2
⋅
2
=
4
186
185
oveq2i
⊢
3
2
⋅
2
=
3
⋅
4
187
182
184
186
3eqtr3i
⊢
2
⋅
6
=
3
⋅
4
188
187
oveq2i
⊢
3
⋅
1
2
⋅
6
=
3
⋅
1
3
⋅
4
189
46
47
pm3.2i
⊢
4
∈
ℂ
∧
4
≠
0
190
35
72
pm3.2i
⊢
3
∈
ℂ
∧
3
≠
0
191
divcan5
⊢
1
∈
ℂ
∧
4
∈
ℂ
∧
4
≠
0
∧
3
∈
ℂ
∧
3
≠
0
→
3
⋅
1
3
⋅
4
=
1
4
192
60
189
190
191
mp3an
⊢
3
⋅
1
3
⋅
4
=
1
4
193
188
192
eqtri
⊢
3
⋅
1
2
⋅
6
=
1
4
194
35
85
60
114
86
117
divmuldivi
⊢
3
2
1
6
=
3
⋅
1
2
⋅
6
195
2t1e2
⊢
2
⋅
1
=
2
196
195
5
eqtri
⊢
2
⋅
1
=
1
+
1
197
196
185
oveq12i
⊢
2
⋅
1
2
⋅
2
=
1
+
1
4
198
divcan5
⊢
1
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
∧
2
∈
ℂ
∧
2
≠
0
→
2
⋅
1
2
⋅
2
=
1
2
199
60
104
104
198
mp3an
⊢
2
⋅
1
2
⋅
2
=
1
2
200
60
60
46
47
divdiri
⊢
1
+
1
4
=
1
4
+
1
4
201
197
199
200
3eqtr3ri
⊢
1
4
+
1
4
=
1
2
202
69
48
48
201
subaddrii
⊢
1
2
−
1
4
=
1
4
203
193
194
202
3eqtr4ri
⊢
1
2
−
1
4
=
3
2
1
6
204
203
negeqi
⊢
−
1
2
−
1
4
=
−
3
2
1
6
205
181
204
eqtr3i
⊢
1
4
−
1
2
=
−
3
2
1
6
206
48
69
subcli
⊢
1
4
−
1
2
∈
ℂ
207
177
negcli
⊢
−
3
2
1
6
∈
ℂ
208
206
207
subeq0i
⊢
1
4
-
1
2
-
−
3
2
1
6
=
0
↔
1
4
−
1
2
=
−
3
2
1
6
209
205
208
mpbir
⊢
1
4
-
1
2
-
−
3
2
1
6
=
0
210
209
oveq2i
⊢
3
2
X
-
X
-
1
4
-
1
2
-
−
3
2
1
6
=
3
2
X
-
X
-
0
211
id
⊢
X
∈
ℂ
→
X
∈
ℂ
212
206
a1i
⊢
X
∈
ℂ
→
1
4
−
1
2
∈
ℂ
213
207
a1i
⊢
X
∈
ℂ
→
−
3
2
1
6
∈
ℂ
214
176
211
212
213
subadd4d
⊢
X
∈
ℂ
→
3
2
X
-
X
-
1
4
-
1
2
-
−
3
2
1
6
=
3
2
X
+
−
3
2
1
6
-
X
+
1
4
-
1
2
215
subdir
⊢
3
2
∈
ℂ
∧
1
∈
ℂ
∧
X
∈
ℂ
→
3
2
−
1
X
=
3
2
X
−
1
X
216
108
60
215
mp3an12
⊢
X
∈
ℂ
→
3
2
−
1
X
=
3
2
X
−
1
X
217
divsubdir
⊢
3
∈
ℂ
∧
2
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
3
−
2
2
=
3
2
−
2
2
218
35
85
104
217
mp3an
⊢
3
−
2
2
=
3
2
−
2
2
219
95
oveq1i
⊢
3
−
2
2
=
1
2
220
2div2e1
⊢
2
2
=
1
221
220
oveq2i
⊢
3
2
−
2
2
=
3
2
−
1
222
218
219
221
3eqtr3ri
⊢
3
2
−
1
=
1
2
223
222
oveq1i
⊢
3
2
−
1
X
=
1
2
X
224
223
a1i
⊢
X
∈
ℂ
→
3
2
−
1
X
=
1
2
X
225
mullid
⊢
X
∈
ℂ
→
1
X
=
X
226
225
oveq2d
⊢
X
∈
ℂ
→
3
2
X
−
1
X
=
3
2
X
−
X
227
216
224
226
3eqtr3rd
⊢
X
∈
ℂ
→
3
2
X
−
X
=
1
2
X
228
227
oveq1d
⊢
X
∈
ℂ
→
3
2
X
-
X
-
0
=
1
2
X
−
0
229
mulcl
⊢
1
2
∈
ℂ
∧
X
∈
ℂ
→
1
2
X
∈
ℂ
230
69
229
mpan
⊢
X
∈
ℂ
→
1
2
X
∈
ℂ
231
230
subid1d
⊢
X
∈
ℂ
→
1
2
X
−
0
=
1
2
X
232
228
231
eqtrd
⊢
X
∈
ℂ
→
3
2
X
-
X
-
0
=
1
2
X
233
210
214
232
3eqtr3a
⊢
X
∈
ℂ
→
3
2
X
+
−
3
2
1
6
-
X
+
1
4
-
1
2
=
1
2
X
234
174
180
233
3eqtr2d
⊢
X
∈
ℂ
→
3
2
X
−
1
6
−
1
4
+
X
-
1
2
=
1
2
X
235
234
negeqd
⊢
X
∈
ℂ
→
−
3
2
X
−
1
6
−
1
4
+
X
-
1
2
=
−
1
2
X
236
169
235
eqtr3d
⊢
X
∈
ℂ
→
1
4
+
X
−
1
2
-
3
2
X
−
1
6
=
−
1
2
X
237
236
oveq2d
⊢
X
∈
ℂ
→
3
2
X
2
+
1
4
+
X
-
1
2
-
3
2
X
−
1
6
=
3
2
X
2
+
−
1
2
X
238
131
230
negsubd
⊢
X
∈
ℂ
→
3
2
X
2
+
−
1
2
X
=
3
2
X
2
−
1
2
X
239
168
237
238
3eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
+
3
2
X
2
-
3
2
X
−
1
6
=
3
2
X
2
−
1
2
X
240
141
142
239
3eqtrd
⊢
X
∈
ℂ
→
∑
k
=
0
1
+
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
3
2
X
2
−
1
2
X
241
8
240
eqtrid
⊢
X
∈
ℂ
→
∑
k
=
0
3
−
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
3
2
X
2
−
1
2
X
242
241
oveq2d
⊢
X
∈
ℂ
→
X
3
−
∑
k
=
0
3
−
1
(
3
k
)
k
BernPoly
X
3
-
k
+
1
=
X
3
−
3
2
X
2
−
1
2
X
243
expcl
⊢
X
∈
ℂ
∧
3
∈
ℕ
0
→
X
3
∈
ℂ
244
1
243
mpan2
⊢
X
∈
ℂ
→
X
3
∈
ℂ
245
244
131
230
subsubd
⊢
X
∈
ℂ
→
X
3
−
3
2
X
2
−
1
2
X
=
X
3
-
3
2
X
2
+
1
2
X
246
3
242
245
3eqtrd
⊢
X
∈
ℂ
→
3
BernPoly
X
=
X
3
-
3
2
X
2
+
1
2
X