Metamath Proof Explorer


Theorem branmfn

Description: The norm of the bra function. (Contributed by NM, 24-May-2006) (New usage is discouraged.)

Ref Expression
Assertion branmfn AnormfnbraA=normA

Proof

Step Hyp Ref Expression
1 2fveq3 A=0normfnbraA=normfnbra0
2 fveq2 A=0normA=norm0
3 1 2 eqeq12d A=0normfnbraA=normAnormfnbra0=norm0
4 brafn AbraA:
5 nmfnval braA:normfnbraA=supx|ynormy1x=braAy*<
6 4 5 syl AnormfnbraA=supx|ynormy1x=braAy*<
7 6 adantr AA0normfnbraA=supx|ynormy1x=braAy*<
8 nmfnsetre braA:x|ynormy1x=braAy
9 4 8 syl Ax|ynormy1x=braAy
10 ressxr *
11 9 10 sstrdi Ax|ynormy1x=braAy*
12 normcl AnormA
13 12 rexrd AnormA*
14 11 13 jca Ax|ynormy1x=braAy*normA*
15 14 adantr AA0x|ynormy1x=braAy*normA*
16 vex zV
17 eqeq1 x=zx=braAyz=braAy
18 17 anbi2d x=znormy1x=braAynormy1z=braAy
19 18 rexbidv x=zynormy1x=braAyynormy1z=braAy
20 16 19 elab zx|ynormy1x=braAyynormy1z=braAy
21 id z=braAyz=braAy
22 braval AybraAy=yihA
23 22 fveq2d AybraAy=yihA
24 23 adantr Aynormy1braAy=yihA
25 21 24 sylan9eqr Aynormy1z=braAyz=yihA
26 bcs2 yAnormy1yihAnormA
27 26 3expa yAnormy1yihAnormA
28 27 ancom1s Aynormy1yihAnormA
29 28 adantr Aynormy1z=braAyyihAnormA
30 25 29 eqbrtrd Aynormy1z=braAyznormA
31 30 exp41 Aynormy1z=braAyznormA
32 31 imp4a Aynormy1z=braAyznormA
33 32 rexlimdv Aynormy1z=braAyznormA
34 33 imp Aynormy1z=braAyznormA
35 20 34 sylan2b Azx|ynormy1x=braAyznormA
36 35 ralrimiva Azx|ynormy1x=braAyznormA
37 36 adantr AA0zx|ynormy1x=braAyznormA
38 12 recnd AnormA
39 38 adantr AA0normA
40 normne0 AnormA0A0
41 40 biimpar AA0normA0
42 39 41 reccld AA01normA
43 simpl AA0A
44 hvmulcl 1normAA1normAA
45 42 43 44 syl2anc AA01normAA
46 norm1 AA0norm1normAA=1
47 1le1 11
48 46 47 eqbrtrdi AA0norm1normAA1
49 ax-his3 1normAAA1normAAihA=1normAAihA
50 42 43 43 49 syl3anc AA01normAAihA=1normAAihA
51 12 adantr AA0normA
52 51 41 rereccld AA01normA
53 hiidrcl AAihA
54 53 adantr AA0AihA
55 52 54 remulcld AA01normAAihA
56 50 55 eqeltrd AA01normAAihA
57 normgt0 AA00<normA
58 57 biimpa AA00<normA
59 51 58 recgt0d AA00<1normA
60 0re 0
61 ltle 01normA0<1normA01normA
62 60 61 mpan 1normA0<1normA01normA
63 52 59 62 sylc AA001normA
64 hiidge0 A0AihA
65 64 adantr AA00AihA
66 52 54 63 65 mulge0d AA001normAAihA
67 66 50 breqtrrd AA001normAAihA
68 56 67 absidd AA01normAAihA=1normAAihA
69 39 41 recid2d AA01normAnormA=1
70 69 oveq2d AA0normA1normAnormA=normA1
71 39 42 39 mul12d AA0normA1normAnormA=1normAnormAnormA
72 38 sqvald AnormA2=normAnormA
73 normsq AnormA2=AihA
74 72 73 eqtr3d AnormAnormA=AihA
75 74 adantr AA0normAnormA=AihA
76 75 oveq2d AA01normAnormAnormA=1normAAihA
77 71 76 eqtrd AA0normA1normAnormA=1normAAihA
78 38 mulridd AnormA1=normA
79 78 adantr AA0normA1=normA
80 70 77 79 3eqtr3rd AA0normA=1normAAihA
81 50 68 80 3eqtr4rd AA0normA=1normAAihA
82 fveq2 y=1normAAnormy=norm1normAA
83 82 breq1d y=1normAAnormy1norm1normAA1
84 fvoveq1 y=1normAAyihA=1normAAihA
85 84 eqeq2d y=1normAAnormA=yihAnormA=1normAAihA
86 83 85 anbi12d y=1normAAnormy1normA=yihAnorm1normAA1normA=1normAAihA
87 86 rspcev 1normAAnorm1normAA1normA=1normAAihAynormy1normA=yihA
88 45 48 81 87 syl12anc AA0ynormy1normA=yihA
89 23 eqeq2d AynormA=braAynormA=yihA
90 89 anbi2d Aynormy1normA=braAynormy1normA=yihA
91 90 rexbidva Aynormy1normA=braAyynormy1normA=yihA
92 91 adantr AA0ynormy1normA=braAyynormy1normA=yihA
93 88 92 mpbird AA0ynormy1normA=braAy
94 eqeq1 x=normAx=braAynormA=braAy
95 94 anbi2d x=normAnormy1x=braAynormy1normA=braAy
96 95 rexbidv x=normAynormy1x=braAyynormy1normA=braAy
97 39 93 96 elabd AA0normAx|ynormy1x=braAy
98 breq2 w=normAz<wz<normA
99 98 rspcev normAx|ynormy1x=braAyz<normAwx|ynormy1x=braAyz<w
100 97 99 sylan AA0z<normAwx|ynormy1x=braAyz<w
101 100 adantlr AA0zz<normAwx|ynormy1x=braAyz<w
102 101 ex AA0zz<normAwx|ynormy1x=braAyz<w
103 102 ralrimiva AA0zz<normAwx|ynormy1x=braAyz<w
104 supxr2 x|ynormy1x=braAy*normA*zx|ynormy1x=braAyznormAzz<normAwx|ynormy1x=braAyz<wsupx|ynormy1x=braAy*<=normA
105 15 37 103 104 syl12anc AA0supx|ynormy1x=braAy*<=normA
106 7 105 eqtrd AA0normfnbraA=normA
107 nmfn0 normfn×0=0
108 bra0 bra0=×0
109 108 fveq2i normfnbra0=normfn×0
110 norm0 norm0=0
111 107 109 110 3eqtr4i normfnbra0=norm0
112 111 a1i Anormfnbra0=norm0
113 3 106 112 pm2.61ne AnormfnbraA=normA