Metamath Proof Explorer


Theorem dchrisum0lema

Description: Lemma for dchrisum0 . Apply dchrisum for the function 1 / sqrt y . (Contributed by Mario Carneiro, 10-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum2.g G=DChrN
rpvmasum2.d D=BaseG
rpvmasum2.1 1˙=0G
rpvmasum2.w W=yD1˙|myLmm=0
dchrisum0.b φXW
dchrisum0lem1.f F=aXLaa
Assertion dchrisum0lema φtc0+∞seq1+Fty1+∞seq1+Fytcy

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum2.g G=DChrN
5 rpvmasum2.d D=BaseG
6 rpvmasum2.1 1˙=0G
7 rpvmasum2.w W=yD1˙|myLmm=0
8 dchrisum0.b φXW
9 dchrisum0lem1.f F=aXLaa
10 7 ssrab3 WD1˙
11 10 8 sselid φXD1˙
12 11 eldifad φXD
13 eldifsni XD1˙X1˙
14 11 13 syl φX1˙
15 fveq2 n=xn=x
16 15 oveq2d n=x1n=1x
17 1nn 1
18 17 a1i φ1
19 rpsqrtcl n+n+
20 19 adantl φn+n+
21 20 rprecred φn+1n
22 simp3r φn+x+1nnxnx
23 simp2l φn+x+1nnxn+
24 23 rprege0d φn+x+1nnxn0n
25 simp2r φn+x+1nnxx+
26 25 rprege0d φn+x+1nnxx0x
27 sqrtle n0nx0xnxnx
28 24 26 27 syl2anc φn+x+1nnxnxnx
29 22 28 mpbid φn+x+1nnxnx
30 23 rpsqrtcld φn+x+1nnxn+
31 25 rpsqrtcld φn+x+1nnxx+
32 30 31 lerecd φn+x+1nnxnx1x1n
33 29 32 mpbid φn+x+1nnx1x1n
34 sqrtlim n+1n0
35 34 a1i φn+1n0
36 2fveq3 a=nXLa=XLn
37 fveq2 a=na=n
38 37 oveq2d a=n1a=1n
39 36 38 oveq12d a=nXLa1a=XLn1n
40 39 cbvmptv aXLa1a=nXLn1n
41 1 2 3 4 5 6 12 14 16 18 21 33 35 40 dchrisum φtc0+∞seq1+aXLa1atx1+∞seq1+aXLa1axtc1x
42 12 adantr φnXD
43 nnz nn
44 43 adantl φnn
45 4 1 5 2 42 44 dchrzrhcl φnXLn
46 simpr φnn
47 46 nnrpd φnn+
48 47 rpsqrtcld φnn+
49 48 rpcnd φnn
50 48 rpne0d φnn0
51 45 49 50 divrecd φnXLnn=XLn1n
52 51 mpteq2dva φnXLnn=nXLn1n
53 36 37 oveq12d a=nXLaa=XLnn
54 53 cbvmptv aXLaa=nXLnn
55 9 54 eqtri F=nXLnn
56 52 55 40 3eqtr4g φF=aXLa1a
57 56 seqeq3d φseq1+F=seq1+aXLa1a
58 57 breq1d φseq1+Ftseq1+aXLa1at
59 58 adantr φc0+∞seq1+Ftseq1+aXLa1at
60 2fveq3 y=xseq1+Fy=seq1+Fx
61 60 fvoveq1d y=xseq1+Fyt=seq1+Fxt
62 fveq2 y=xy=x
63 62 oveq2d y=xcy=cx
64 61 63 breq12d y=xseq1+Fytcyseq1+Fxtcx
65 64 cbvralvw y1+∞seq1+Fytcyx1+∞seq1+Fxtcx
66 56 ad2antrr φc0+∞x1+∞F=aXLa1a
67 66 seqeq3d φc0+∞x1+∞seq1+F=seq1+aXLa1a
68 67 fveq1d φc0+∞x1+∞seq1+Fx=seq1+aXLa1ax
69 68 fvoveq1d φc0+∞x1+∞seq1+Fxt=seq1+aXLa1axt
70 elrege0 c0+∞c0c
71 70 simplbi c0+∞c
72 71 ad2antlr φc0+∞x1+∞c
73 72 recnd φc0+∞x1+∞c
74 1re 1
75 elicopnf 1x1+∞x1x
76 74 75 ax-mp x1+∞x1x
77 76 simplbi x1+∞x
78 77 adantl φc0+∞x1+∞x
79 0red φc0+∞x1+∞0
80 1red φc0+∞x1+∞1
81 0lt1 0<1
82 81 a1i φc0+∞x1+∞0<1
83 76 simprbi x1+∞1x
84 83 adantl φc0+∞x1+∞1x
85 79 80 78 82 84 ltletrd φc0+∞x1+∞0<x
86 78 85 elrpd φc0+∞x1+∞x+
87 86 rpsqrtcld φc0+∞x1+∞x+
88 87 rpcnd φc0+∞x1+∞x
89 87 rpne0d φc0+∞x1+∞x0
90 73 88 89 divrecd φc0+∞x1+∞cx=c1x
91 69 90 breq12d φc0+∞x1+∞seq1+Fxtcxseq1+aXLa1axtc1x
92 91 ralbidva φc0+∞x1+∞seq1+Fxtcxx1+∞seq1+aXLa1axtc1x
93 65 92 bitrid φc0+∞y1+∞seq1+Fytcyx1+∞seq1+aXLa1axtc1x
94 59 93 anbi12d φc0+∞seq1+Fty1+∞seq1+Fytcyseq1+aXLa1atx1+∞seq1+aXLa1axtc1x
95 94 rexbidva φc0+∞seq1+Fty1+∞seq1+Fytcyc0+∞seq1+aXLa1atx1+∞seq1+aXLa1axtc1x
96 95 exbidv φtc0+∞seq1+Fty1+∞seq1+Fytcytc0+∞seq1+aXLa1atx1+∞seq1+aXLa1axtc1x
97 41 96 mpbird φtc0+∞seq1+Fty1+∞seq1+Fytcy