Metamath Proof Explorer


Theorem dchrisumlema

Description: Lemma for dchrisum . Lemma 9.4.1 of Shapiro, p. 377. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.g G=DChrN
rpvmasum.d D=BaseG
rpvmasum.1 1˙=0G
dchrisum.b φXD
dchrisum.n1 φX1˙
dchrisum.2 n=xA=B
dchrisum.3 φM
dchrisum.4 φn+A
dchrisum.5 φn+x+MnnxBA
dchrisum.6 φn+A0
dchrisum.7 F=nXLnA
Assertion dchrisumlema φI+I/nAIM+∞0I/nA

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.g G=DChrN
5 rpvmasum.d D=BaseG
6 rpvmasum.1 1˙=0G
7 dchrisum.b φXD
8 dchrisum.n1 φX1˙
9 dchrisum.2 n=xA=B
10 dchrisum.3 φM
11 dchrisum.4 φn+A
12 dchrisum.5 φn+x+MnnxBA
13 dchrisum.6 φn+A0
14 dchrisum.7 F=nXLnA
15 11 ralrimiva φn+A
16 nfcsb1v _nI/nA
17 16 nfel1 nI/nA
18 csbeq1a n=IA=I/nA
19 18 eleq1d n=IAI/nA
20 17 19 rspc I+n+AI/nA
21 15 20 syl5com φI+I/nA
22 eqid I+1=I+1
23 10 nnred φM
24 elicopnf MIM+∞IMI
25 23 24 syl φIM+∞IMI
26 25 simprbda φIM+∞I
27 26 flcld φIM+∞I
28 27 peano2zd φIM+∞I+1
29 nnuz =1
30 1zzd φ1
31 nnrp ii+
32 31 ssriv +
33 eqid n+A=n+A
34 33 11 dmmptd φdomn+A=+
35 32 34 sseqtrrid φdomn+A
36 29 30 13 35 rlimclim1 φn+A0
37 36 adantr φIM+∞n+A0
38 0red φIM+∞0
39 23 adantr φIM+∞M
40 10 nngt0d φ0<M
41 40 adantr φIM+∞0<M
42 25 simplbda φIM+∞MI
43 38 39 26 41 42 ltletrd φIM+∞0<I
44 26 43 elrpd φIM+∞I+
45 15 adantr φIM+∞n+A
46 44 45 20 sylc φIM+∞I/nA
47 46 recnd φIM+∞I/nA
48 ssid I+1I+1
49 fvex I+1V
50 48 49 climconst2 I/nAI+1I+1×I/nAI/nA
51 47 28 50 syl2anc φIM+∞I+1×I/nAI/nA
52 44 rpge0d φIM+∞0I
53 flge0nn0 I0II0
54 26 52 53 syl2anc φIM+∞I0
55 nn0p1nn I0I+1
56 54 55 syl φIM+∞I+1
57 eluznn I+1iI+1i
58 56 57 sylan φIM+∞iI+1i
59 58 nnrpd φIM+∞iI+1i+
60 15 ad2antrr φIM+∞iI+1n+A
61 nfcsb1v _ni/nA
62 61 nfel1 ni/nA
63 csbeq1a n=iA=i/nA
64 63 eleq1d n=iAi/nA
65 62 64 rspc i+n+Ai/nA
66 59 60 65 sylc φIM+∞iI+1i/nA
67 33 fvmpts i+i/nAn+Ai=i/nA
68 59 66 67 syl2anc φIM+∞iI+1n+Ai=i/nA
69 68 66 eqeltrd φIM+∞iI+1n+Ai
70 fvconst2g I/nAiI+1I+1×I/nAi=I/nA
71 46 70 sylan φIM+∞iI+1I+1×I/nAi=I/nA
72 46 adantr φIM+∞iI+1I/nA
73 71 72 eqeltrd φIM+∞iI+1I+1×I/nAi
74 44 adantr φIM+∞iI+1I+
75 12 3expia φn+x+MnnxBA
76 75 ralrimivva φn+x+MnnxBA
77 76 ad2antrr φIM+∞iI+1n+x+MnnxBA
78 nfcv _n+
79 nfv nMIIx
80 nfcv _nB
81 nfcv _n
82 80 81 16 nfbr nBI/nA
83 79 82 nfim nMIIxBI/nA
84 78 83 nfralw nx+MIIxBI/nA
85 breq2 n=IMnMI
86 breq1 n=InxIx
87 85 86 anbi12d n=IMnnxMIIx
88 18 breq2d n=IBABI/nA
89 87 88 imbi12d n=IMnnxBAMIIxBI/nA
90 89 ralbidv n=Ix+MnnxBAx+MIIxBI/nA
91 84 90 rspc I+n+x+MnnxBAx+MIIxBI/nA
92 74 77 91 sylc φIM+∞iI+1x+MIIxBI/nA
93 42 adantr φIM+∞iI+1MI
94 26 adantr φIM+∞iI+1I
95 reflcl II
96 peano2re II+1
97 94 95 96 3syl φIM+∞iI+1I+1
98 58 nnred φIM+∞iI+1i
99 fllep1 III+1
100 26 99 syl φIM+∞II+1
101 100 adantr φIM+∞iI+1II+1
102 eluzle iI+1I+1i
103 102 adantl φIM+∞iI+1I+1i
104 94 97 98 101 103 letrd φIM+∞iI+1Ii
105 93 104 jca φIM+∞iI+1MIIi
106 breq2 x=iIxIi
107 106 anbi2d x=iMIIxMIIi
108 eqvisset x=iiV
109 equtr2 x=in=ix=n
110 9 equcoms x=nA=B
111 109 110 syl x=in=iA=B
112 108 111 csbied x=ii/nA=B
113 112 eqcomd x=iB=i/nA
114 113 breq1d x=iBI/nAi/nAI/nA
115 107 114 imbi12d x=iMIIxBI/nAMIIii/nAI/nA
116 115 rspcv i+x+MIIxBI/nAMIIii/nAI/nA
117 59 92 105 116 syl3c φIM+∞iI+1i/nAI/nA
118 117 68 71 3brtr4d φIM+∞iI+1n+AiI+1×I/nAi
119 22 28 37 51 69 73 118 climle φIM+∞0I/nA
120 119 ex φIM+∞0I/nA
121 21 120 jca φI+I/nAIM+∞0I/nA