Metamath Proof Explorer


Theorem dia2dimlem1

Description: Lemma for dia2dim . Show properties of the auxiliary atom Q . Part of proof of Lemma M in Crawley p. 121 line 3. (Contributed by NM, 8-Sep-2014)

Ref Expression
Hypotheses dia2dimlem1.l ˙=K
dia2dimlem1.j ˙=joinK
dia2dimlem1.m ˙=meetK
dia2dimlem1.a A=AtomsK
dia2dimlem1.h H=LHypK
dia2dimlem1.t T=LTrnKW
dia2dimlem1.r R=trLKW
dia2dimlem1.q Q=P˙U˙FP˙V
dia2dimlem1.k φKHLWH
dia2dimlem1.u φUAU˙W
dia2dimlem1.v φVAV˙W
dia2dimlem1.p φPA¬P˙W
dia2dimlem1.f φFTFPP
dia2dimlem1.rf φRF˙U˙V
dia2dimlem1.uv φUV
dia2dimlem1.ru φRFU
Assertion dia2dimlem1 φQA¬Q˙W

Proof

Step Hyp Ref Expression
1 dia2dimlem1.l ˙=K
2 dia2dimlem1.j ˙=joinK
3 dia2dimlem1.m ˙=meetK
4 dia2dimlem1.a A=AtomsK
5 dia2dimlem1.h H=LHypK
6 dia2dimlem1.t T=LTrnKW
7 dia2dimlem1.r R=trLKW
8 dia2dimlem1.q Q=P˙U˙FP˙V
9 dia2dimlem1.k φKHLWH
10 dia2dimlem1.u φUAU˙W
11 dia2dimlem1.v φVAV˙W
12 dia2dimlem1.p φPA¬P˙W
13 dia2dimlem1.f φFTFPP
14 dia2dimlem1.rf φRF˙U˙V
15 dia2dimlem1.uv φUV
16 dia2dimlem1.ru φRFU
17 9 simpld φKHL
18 12 simpld φPA
19 1 4 5 6 7 trlat KHLWHPA¬P˙WFTFPPRFA
20 9 12 13 19 syl3anc φRFA
21 10 simpld φUA
22 13 simpld φFT
23 1 4 5 6 ltrnel KHLWHFTPA¬P˙WFPA¬FP˙W
24 9 22 12 23 syl3anc φFPA¬FP˙W
25 24 simpld φFPA
26 11 simpld φVA
27 12 simprd φ¬P˙W
28 1 5 6 7 trlle KHLWHFTRF˙W
29 9 22 28 syl2anc φRF˙W
30 10 simprd φU˙W
31 17 hllatd φKLat
32 eqid BaseK=BaseK
33 32 4 atbase RFARFBaseK
34 20 33 syl φRFBaseK
35 32 4 atbase UAUBaseK
36 21 35 syl φUBaseK
37 9 simprd φWH
38 32 5 lhpbase WHWBaseK
39 37 38 syl φWBaseK
40 32 1 2 latjle12 KLatRFBaseKUBaseKWBaseKRF˙WU˙WRF˙U˙W
41 31 34 36 39 40 syl13anc φRF˙WU˙WRF˙U˙W
42 29 30 41 mpbi2and φRF˙U˙W
43 32 4 atbase PAPBaseK
44 18 43 syl φPBaseK
45 32 2 4 hlatjcl KHLRFAUARF˙UBaseK
46 17 20 21 45 syl3anc φRF˙UBaseK
47 32 1 lattr KLatPBaseKRF˙UBaseKWBaseKP˙RF˙URF˙U˙WP˙W
48 31 44 46 39 47 syl13anc φP˙RF˙URF˙U˙WP˙W
49 42 48 mpan2d φP˙RF˙UP˙W
50 27 49 mtod φ¬P˙RF˙U
51 11 simprd φV˙W
52 24 simprd φ¬FP˙W
53 nbrne2 V˙W¬FP˙WVFP
54 51 52 53 syl2anc φVFP
55 54 necomd φFPV
56 50 55 jca φ¬P˙RF˙UFPV
57 31 adantr φP˙U=FP˙VKLat
58 44 adantr φP˙U=FP˙VPBaseK
59 32 2 4 hlatjcl KHLVAUAV˙UBaseK
60 17 26 21 59 syl3anc φV˙UBaseK
61 60 adantr φP˙U=FP˙VV˙UBaseK
62 39 adantr φP˙U=FP˙VWBaseK
63 1 2 4 hlatlej2 KHLFPAVAV˙FP˙V
64 17 25 26 63 syl3anc φV˙FP˙V
65 64 adantr φP˙U=FP˙VV˙FP˙V
66 simpr φP˙U=FP˙VP˙U=FP˙V
67 65 66 breqtrrd φP˙U=FP˙VV˙P˙U
68 15 necomd φVU
69 1 2 4 hlatexch2 KHLVAPAUAVUV˙P˙UP˙V˙U
70 17 26 18 21 68 69 syl131anc φV˙P˙UP˙V˙U
71 70 adantr φP˙U=FP˙VV˙P˙UP˙V˙U
72 67 71 mpd φP˙U=FP˙VP˙V˙U
73 32 4 atbase VAVBaseK
74 26 73 syl φVBaseK
75 32 1 2 latjle12 KLatVBaseKUBaseKWBaseKV˙WU˙WV˙U˙W
76 31 74 36 39 75 syl13anc φV˙WU˙WV˙U˙W
77 51 30 76 mpbi2and φV˙U˙W
78 77 adantr φP˙U=FP˙VV˙U˙W
79 32 1 57 58 61 62 72 78 lattrd φP˙U=FP˙VP˙W
80 79 ex φP˙U=FP˙VP˙W
81 80 necon3bd φ¬P˙WP˙UFP˙V
82 27 81 mpd φP˙UFP˙V
83 1 2 4 hlatlej2 KHLPAFPAFP˙P˙FP
84 17 18 25 83 syl3anc φFP˙P˙FP
85 1 2 3 4 5 6 7 trlval2 KHLWHFTPA¬P˙WRF=P˙FP˙W
86 9 22 12 85 syl3anc φRF=P˙FP˙W
87 86 oveq2d φP˙RF=P˙P˙FP˙W
88 32 2 4 hlatjcl KHLPAFPAP˙FPBaseK
89 17 18 25 88 syl3anc φP˙FPBaseK
90 1 2 4 hlatlej1 KHLPAFPAP˙P˙FP
91 17 18 25 90 syl3anc φP˙P˙FP
92 32 1 2 3 4 atmod3i1 KHLPAP˙FPBaseKWBaseKP˙P˙FPP˙P˙FP˙W=P˙FP˙P˙W
93 17 18 89 39 91 92 syl131anc φP˙P˙FP˙W=P˙FP˙P˙W
94 eqid 1.K=1.K
95 1 2 94 4 5 lhpjat2 KHLWHPA¬P˙WP˙W=1.K
96 9 12 95 syl2anc φP˙W=1.K
97 96 oveq2d φP˙FP˙P˙W=P˙FP˙1.K
98 hlol KHLKOL
99 17 98 syl φKOL
100 32 3 94 olm11 KOLP˙FPBaseKP˙FP˙1.K=P˙FP
101 99 89 100 syl2anc φP˙FP˙1.K=P˙FP
102 97 101 eqtrd φP˙FP˙P˙W=P˙FP
103 93 102 eqtrd φP˙P˙FP˙W=P˙FP
104 87 103 eqtrd φP˙RF=P˙FP
105 84 104 breqtrrd φFP˙P˙RF
106 2 4 hlatjcom KHLUAVAU˙V=V˙U
107 17 21 26 106 syl3anc φU˙V=V˙U
108 14 107 breqtrd φRF˙V˙U
109 1 2 4 hlatexch2 KHLRFAVAUARFURF˙V˙UV˙RF˙U
110 17 20 26 21 16 109 syl131anc φRF˙V˙UV˙RF˙U
111 108 110 mpd φV˙RF˙U
112 105 111 jca φFP˙P˙RFV˙RF˙U
113 1 2 3 4 ps-2c KHLPARFAUAFPAVA¬P˙RF˙UFPVP˙UFP˙VFP˙P˙RFV˙RF˙UP˙U˙FP˙VA
114 17 18 20 21 25 26 56 82 112 113 syl333anc φP˙U˙FP˙VA
115 8 114 eqeltrid φQA
116 32 2 4 hlatjcl KHLPAUAP˙UBaseK
117 17 18 21 116 syl3anc φP˙UBaseK
118 32 2 4 hlatjcl KHLFPAVAFP˙VBaseK
119 17 25 26 118 syl3anc φFP˙VBaseK
120 32 1 3 latmle1 KLatP˙UBaseKFP˙VBaseKP˙U˙FP˙V˙P˙U
121 31 117 119 120 syl3anc φP˙U˙FP˙V˙P˙U
122 8 121 eqbrtrid φQ˙P˙U
123 32 4 atbase QAQBaseK
124 115 123 syl φQBaseK
125 32 1 3 latlem12 KLatQBaseKP˙UBaseKWBaseKQ˙P˙UQ˙WQ˙P˙U˙W
126 31 124 117 39 125 syl13anc φQ˙P˙UQ˙WQ˙P˙U˙W
127 126 biimpd φQ˙P˙UQ˙WQ˙P˙U˙W
128 122 127 mpand φQ˙WQ˙P˙U˙W
129 128 imp φQ˙WQ˙P˙U˙W
130 eqid 0.K=0.K
131 1 3 130 4 5 lhpmat KHLWHPA¬P˙WP˙W=0.K
132 9 12 131 syl2anc φP˙W=0.K
133 132 oveq1d φP˙W˙U=0.K˙U
134 32 1 2 3 4 atmod4i1 KHLUAPBaseKWBaseKU˙WP˙W˙U=P˙U˙W
135 17 21 44 39 30 134 syl131anc φP˙W˙U=P˙U˙W
136 32 2 130 olj02 KOLUBaseK0.K˙U=U
137 99 36 136 syl2anc φ0.K˙U=U
138 133 135 137 3eqtr3d φP˙U˙W=U
139 138 adantr φQ˙WP˙U˙W=U
140 129 139 breqtrd φQ˙WQ˙U
141 hlatl KHLKAtLat
142 17 141 syl φKAtLat
143 142 adantr φQ˙WKAtLat
144 115 adantr φQ˙WQA
145 21 adantr φQ˙WUA
146 1 4 atcmp KAtLatQAUAQ˙UQ=U
147 143 144 145 146 syl3anc φQ˙WQ˙UQ=U
148 140 147 mpbid φQ˙WQ=U
149 32 1 3 latmle2 KLatP˙UBaseKFP˙VBaseKP˙U˙FP˙V˙FP˙V
150 31 117 119 149 syl3anc φP˙U˙FP˙V˙FP˙V
151 8 150 eqbrtrid φQ˙FP˙V
152 32 1 3 latlem12 KLatQBaseKFP˙VBaseKWBaseKQ˙FP˙VQ˙WQ˙FP˙V˙W
153 31 124 119 39 152 syl13anc φQ˙FP˙VQ˙WQ˙FP˙V˙W
154 153 biimpd φQ˙FP˙VQ˙WQ˙FP˙V˙W
155 151 154 mpand φQ˙WQ˙FP˙V˙W
156 155 imp φQ˙WQ˙FP˙V˙W
157 1 3 130 4 5 lhpmat KHLWHFPA¬FP˙WFP˙W=0.K
158 9 24 157 syl2anc φFP˙W=0.K
159 158 oveq1d φFP˙W˙V=0.K˙V
160 32 4 atbase FPAFPBaseK
161 25 160 syl φFPBaseK
162 32 1 2 3 4 atmod4i1 KHLVAFPBaseKWBaseKV˙WFP˙W˙V=FP˙V˙W
163 17 26 161 39 51 162 syl131anc φFP˙W˙V=FP˙V˙W
164 32 2 130 olj02 KOLVBaseK0.K˙V=V
165 99 74 164 syl2anc φ0.K˙V=V
166 159 163 165 3eqtr3d φFP˙V˙W=V
167 166 adantr φQ˙WFP˙V˙W=V
168 156 167 breqtrd φQ˙WQ˙V
169 26 adantr φQ˙WVA
170 1 4 atcmp KAtLatQAVAQ˙VQ=V
171 143 144 169 170 syl3anc φQ˙WQ˙VQ=V
172 168 171 mpbid φQ˙WQ=V
173 148 172 eqtr3d φQ˙WU=V
174 173 ex φQ˙WU=V
175 174 necon3ad φUV¬Q˙W
176 15 175 mpd φ¬Q˙W
177 115 176 jca φQA¬Q˙W