Metamath Proof Explorer


Theorem dihmeetlem1N

Description: Isomorphism H of a conjunction. (Contributed by NM, 21-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem5a.b B=BaseK
dihglblem5a.m ˙=meetK
dihglblem5a.h H=LHypK
dihglblem5a.i I=DIsoHKW
dihglblem5a.l ˙=K
dihglblem5a.j ˙=joinK
dihglblem5a.a A=AtomsK
dihglblem5a.p P=ocKW
dihglblem5a.t T=LTrnKW
dihglblem5a.r R=trLKW
dihglblem5a.e E=TEndoKW
dihglblem5a.g G=ιhT|hP=q
dihglblem5a.o 0˙=hTIB
Assertion dihmeetlem1N KHLWHXB¬X˙WYBY˙WIX˙Y=IXIY

Proof

Step Hyp Ref Expression
1 dihglblem5a.b B=BaseK
2 dihglblem5a.m ˙=meetK
3 dihglblem5a.h H=LHypK
4 dihglblem5a.i I=DIsoHKW
5 dihglblem5a.l ˙=K
6 dihglblem5a.j ˙=joinK
7 dihglblem5a.a A=AtomsK
8 dihglblem5a.p P=ocKW
9 dihglblem5a.t T=LTrnKW
10 dihglblem5a.r R=trLKW
11 dihglblem5a.e E=TEndoKW
12 dihglblem5a.g G=ιhT|hP=q
13 dihglblem5a.o 0˙=hTIB
14 simp1l KHLWHXB¬X˙WYBY˙WKHL
15 14 hllatd KHLWHXB¬X˙WYBY˙WKLat
16 simp2l KHLWHXB¬X˙WYBY˙WXB
17 simp3l KHLWHXB¬X˙WYBY˙WYB
18 1 5 2 latmle1 KLatXBYBX˙Y˙X
19 15 16 17 18 syl3anc KHLWHXB¬X˙WYBY˙WX˙Y˙X
20 simp1 KHLWHXB¬X˙WYBY˙WKHLWH
21 1 2 latmcl KLatXBYBX˙YB
22 15 16 17 21 syl3anc KHLWHXB¬X˙WYBY˙WX˙YB
23 1 5 3 4 dihord KHLWHX˙YBXBIX˙YIXX˙Y˙X
24 20 22 16 23 syl3anc KHLWHXB¬X˙WYBY˙WIX˙YIXX˙Y˙X
25 19 24 mpbird KHLWHXB¬X˙WYBY˙WIX˙YIX
26 1 5 2 latmle2 KLatXBYBX˙Y˙Y
27 15 16 17 26 syl3anc KHLWHXB¬X˙WYBY˙WX˙Y˙Y
28 1 5 3 4 dihord KHLWHX˙YBYBIX˙YIYX˙Y˙Y
29 20 22 17 28 syl3anc KHLWHXB¬X˙WYBY˙WIX˙YIYX˙Y˙Y
30 27 29 mpbird KHLWHXB¬X˙WYBY˙WIX˙YIY
31 25 30 ssind KHLWHXB¬X˙WYBY˙WIX˙YIXIY
32 3 4 dihvalrel KHLWHRelIX
33 relin1 RelIXRelIXIY
34 32 33 syl KHLWHRelIXIY
35 34 3ad2ant1 KHLWHXB¬X˙WYBY˙WRelIXIY
36 elin fsIXIYfsIXfsIY
37 1 5 6 2 7 3 lhpmcvr2 KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=X
38 37 3adant3 KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=X
39 simpl1 KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XKHLWH
40 simpl2 KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XXB¬X˙W
41 simprl KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XqA
42 simprrl KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=X¬q˙W
43 41 42 jca KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XqA¬q˙W
44 simprrr KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=Xq˙X˙W=X
45 vex fV
46 vex sV
47 1 5 6 2 7 3 8 9 10 11 4 12 45 46 dihopelvalc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfsIXfTsERfsG-1˙X
48 39 40 43 44 47 syl112anc KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XfsIXfTsERfsG-1˙X
49 simpr fTsERfsG-1˙XRfsG-1˙X
50 48 49 syl6bi KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XfsIXRfsG-1˙X
51 simpl3 KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XYBY˙W
52 1 5 3 9 10 13 4 dihopelvalbN KHLWHYBY˙WfsIYfTRf˙Ys=0˙
53 39 51 52 syl2anc KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XfsIYfTRf˙Ys=0˙
54 53 biimpd KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XfsIYfTRf˙Ys=0˙
55 simprll RfsG-1˙XfTRf˙Ys=0˙fT
56 55 3ad2ant3 KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙fT
57 simp3rr KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙s=0˙
58 57 fveq1d KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙sG=0˙G
59 simp11 KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙KHLWH
60 5 7 3 8 lhpocnel2 KHLWHPA¬P˙W
61 59 60 syl KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙PA¬P˙W
62 simp2l KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙qA
63 simp2rl KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙¬q˙W
64 5 7 3 9 12 ltrniotacl KHLWHPA¬P˙WqA¬q˙WGT
65 59 61 62 63 64 syl112anc KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙GT
66 13 1 tendo02 GT0˙G=IB
67 65 66 syl KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙0˙G=IB
68 58 67 eqtrd KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙sG=IB
69 68 cnveqd KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙sG-1=IB-1
70 cnvresid IB-1=IB
71 69 70 eqtrdi KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙sG-1=IB
72 71 coeq2d KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙fsG-1=fIB
73 1 3 9 ltrn1o KHLWHfTf:B1-1 ontoB
74 59 56 73 syl2anc KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙f:B1-1 ontoB
75 f1of f:B1-1 ontoBf:BB
76 fcoi1 f:BBfIB=f
77 74 75 76 3syl KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙fIB=f
78 72 77 eqtrd KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙fsG-1=f
79 78 fveq2d KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙RfsG-1=Rf
80 simp3l KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙RfsG-1˙X
81 79 80 eqbrtrrd KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙Rf˙X
82 simprlr RfsG-1˙XfTRf˙Ys=0˙Rf˙Y
83 82 3ad2ant3 KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙Rf˙Y
84 simp11l KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙KHL
85 84 hllatd KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙KLat
86 1 3 9 10 trlcl KHLWHfTRfB
87 59 56 86 syl2anc KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙RfB
88 simp12l KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙XB
89 simp13l KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙YB
90 1 5 2 latlem12 KLatRfBXBYBRf˙XRf˙YRf˙X˙Y
91 85 87 88 89 90 syl13anc KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙Rf˙XRf˙YRf˙X˙Y
92 81 83 91 mpbi2and KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙Rf˙X˙Y
93 56 92 jca KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙fTRf˙X˙Y
94 85 88 89 21 syl3anc KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙X˙YB
95 simp11r KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙WH
96 1 3 lhpbase WHWB
97 95 96 syl KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙WB
98 85 88 89 26 syl3anc KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙X˙Y˙Y
99 simp13r KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙Y˙W
100 1 5 85 94 89 97 98 99 lattrd KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙X˙Y˙W
101 1 5 3 9 10 13 4 dihopelvalbN KHLWHX˙YBX˙Y˙WfsIX˙YfTRf˙X˙Ys=0˙
102 59 94 100 101 syl12anc KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙fsIX˙YfTRf˙X˙Ys=0˙
103 93 57 102 mpbir2and KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙fsIX˙Y
104 103 3expia KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XRfsG-1˙XfTRf˙Ys=0˙fsIX˙Y
105 50 54 104 syl2and KHLWHXB¬X˙WYBY˙WqA¬q˙Wq˙X˙W=XfsIXfsIYfsIX˙Y
106 38 105 rexlimddv KHLWHXB¬X˙WYBY˙WfsIXfsIYfsIX˙Y
107 36 106 biimtrid KHLWHXB¬X˙WYBY˙WfsIXIYfsIX˙Y
108 35 107 relssdv KHLWHXB¬X˙WYBY˙WIXIYIX˙Y
109 31 108 eqssd KHLWHXB¬X˙WYBY˙WIX˙Y=IXIY