Metamath Proof Explorer


Theorem dirkertrigeq

Description: Trigonometric equality for the Dirichlet kernel. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dirkertrigeq.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
dirkertrigeq.n φN
dirkertrigeq.f F=DN
dirkertrigeq.h H=s12+k=1Ncosksπ
Assertion dirkertrigeq φF=H

Proof

Step Hyp Ref Expression
1 dirkertrigeq.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
2 dirkertrigeq.n φN
3 dirkertrigeq.f F=DN
4 dirkertrigeq.h H=s12+k=1Ncosksπ
5 3 a1i φF=DN
6 1 dirkerval NDN=sifsmod2π=02 N+12πsinN+12s2πsins2
7 2 6 syl φDN=sifsmod2π=02 N+12πsinN+12s2πsins2
8 2cnd φ2
9 2 nncnd φN
10 8 9 mulcld φ2 N
11 peano2cn 2 N2 N+1
12 10 11 syl φ2 N+1
13 picn π
14 13 a1i φπ
15 2ne0 20
16 15 a1i φ20
17 pire π
18 pipos 0<π
19 17 18 gt0ne0ii π0
20 19 a1i φπ0
21 12 8 14 16 20 divdiv1d φ2 N+12π=2 N+12π
22 21 eqcomd φ2 N+12π=2 N+12π
23 22 ad2antrr φssmod2π=02 N+12π=2 N+12π
24 iftrue smod2π=0ifsmod2π=02 N+12πsinN+12s2πsins2=2 N+12π
25 24 adantl φssmod2π=0ifsmod2π=02 N+12πsinN+12s2πsins2=2 N+12π
26 elfzelz k1Nk
27 26 zcnd k1Nk
28 27 adantl ssmod2π=0k1Nk
29 recn ss
30 29 ad2antrr ssmod2π=0k1Ns
31 2cn 2
32 31 13 mulcli 2π
33 32 a1i ssmod2π=0k1N2π
34 31 13 15 19 mulne0i 2π0
35 34 a1i ssmod2π=0k1N2π0
36 28 30 33 35 divassd ssmod2π=0k1Nks2π=ks2π
37 26 adantl ssmod2π=0k1Nk
38 simpr ssmod2π=0smod2π=0
39 simpl ssmod2π=0s
40 2rp 2+
41 pirp π+
42 rpmulcl 2+π+2π+
43 40 41 42 mp2an 2π+
44 mod0 s2π+smod2π=0s2π
45 39 43 44 sylancl ssmod2π=0smod2π=0s2π
46 38 45 mpbid ssmod2π=0s2π
47 46 adantr ssmod2π=0k1Ns2π
48 37 47 zmulcld ssmod2π=0k1Nks2π
49 36 48 eqeltrd ssmod2π=0k1Nks2π
50 27 adantl sk1Nk
51 29 adantr sk1Ns
52 50 51 mulcld sk1Nks
53 coseq1 kscosks=1ks2π
54 52 53 syl sk1Ncosks=1ks2π
55 54 adantlr ssmod2π=0k1Ncosks=1ks2π
56 49 55 mpbird ssmod2π=0k1Ncosks=1
57 56 ralrimiva ssmod2π=0k1Ncosks=1
58 57 adantll φssmod2π=0k1Ncosks=1
59 58 sumeq2d φssmod2π=0k=1Ncosks=k=1N1
60 fzfid φssmod2π=01NFin
61 1cnd φssmod2π=01
62 fsumconst 1NFin1k=1N1=1N1
63 60 61 62 syl2anc φssmod2π=0k=1N1=1N1
64 2 nnnn0d φN0
65 hashfz1 N01N=N
66 64 65 syl φ1N=N
67 66 oveq1d φ1N1= N1
68 9 mulridd φ N1=N
69 67 68 eqtrd φ1N1=N
70 69 ad2antrr φssmod2π=01N1=N
71 59 63 70 3eqtrd φssmod2π=0k=1Ncosks=N
72 71 oveq2d φssmod2π=012+k=1Ncosks=12+N
73 9 div1d φN1=N
74 73 eqcomd φN=N1
75 74 oveq2d φ12+N=12+N1
76 1cnd φ1
77 ax-1ne0 10
78 77 a1i φ10
79 76 8 9 76 16 78 divadddivd φ12+N1=11+ N221
80 76 76 mulcld φ11
81 9 8 mulcld φ N2
82 80 81 addcomd φ11+ N2= N2+11
83 9 8 mulcomd φ N2=2 N
84 76 mulridd φ11=1
85 83 84 oveq12d φ N2+11=2 N+1
86 82 85 eqtrd φ11+ N2=2 N+1
87 8 mulridd φ21=2
88 86 87 oveq12d φ11+ N221=2 N+12
89 75 79 88 3eqtrd φ12+N=2 N+12
90 89 ad2antrr φssmod2π=012+N=2 N+12
91 72 90 eqtrd φssmod2π=012+k=1Ncosks=2 N+12
92 91 oveq1d φssmod2π=012+k=1Ncosksπ=2 N+12π
93 23 25 92 3eqtr4rd φssmod2π=012+k=1Ncosksπ=ifsmod2π=02 N+12πsinN+12s2πsins2
94 iffalse ¬smod2π=0ifsmod2π=02 N+12πsinN+12s2πsins2=sinN+12s2πsins2
95 94 adantl φs¬smod2π=0ifsmod2π=02 N+12πsinN+12s2πsins2=sinN+12s2πsins2
96 13 a1i sπ
97 19 a1i sπ0
98 29 96 97 divcan1d ssππ=s
99 98 eqcomd ss=sππ
100 99 ad2antrr s¬smod2π=0smodπ=0s=sππ
101 simpr ssmodπ=0smodπ=0
102 simpl ssmodπ=0s
103 mod0 sπ+smodπ=0sπ
104 102 41 103 sylancl ssmodπ=0smodπ=0sπ
105 101 104 mpbid ssmodπ=0sπ
106 105 adantlr s¬smod2π=0smodπ=0sπ
107 rpreccl π+1π+
108 41 107 ax-mp 1π+
109 moddi 1π+s2π+1πsmod2π=1πsmod1π2π
110 108 43 109 mp3an13 s1πsmod2π=1πsmod1π2π
111 29 96 97 divrec2d ssπ=1πs
112 111 eqcomd s1πs=sπ
113 96 97 reccld s1π
114 32 a1i s2π
115 113 114 mulcomd s1π2π=2π1π
116 2cnd s2
117 116 96 113 mulassd s2π1π=2π1π
118 13 19 recidi π1π=1
119 118 oveq2i 2π1π=21
120 116 mulridd s21=2
121 119 120 eqtrid s2π1π=2
122 115 117 121 3eqtrd s1π2π=2
123 112 122 oveq12d s1πsmod1π2π=sπmod2
124 110 123 eqtr2d ssπmod2=1πsmod2π
125 124 adantr s¬smod2π=0sπmod2=1πsmod2π
126 113 adantr s¬smod2π=01π
127 id ss
128 43 a1i s2π+
129 127 128 modcld ssmod2π
130 129 recnd ssmod2π
131 130 adantr s¬smod2π=0smod2π
132 ax-1cn 1
133 132 13 77 19 divne0i 1π0
134 133 a1i s¬smod2π=01π0
135 neqne ¬smod2π=0smod2π0
136 135 adantl s¬smod2π=0smod2π0
137 126 131 134 136 mulne0d s¬smod2π=01πsmod2π0
138 125 137 eqnetrd s¬smod2π=0sπmod20
139 138 adantr s¬smod2π=0smodπ=0sπmod20
140 oddfl sπsπmod20sπ=2sπ2+1
141 106 139 140 syl2anc s¬smod2π=0smodπ=0sπ=2sπ2+1
142 141 oveq1d s¬smod2π=0smodπ=0sππ=2sπ2+1π
143 100 142 eqtrd s¬smod2π=0smodπ=0s=2sπ2+1π
144 143 oveq2d s¬smod2π=0smodπ=0ks=k2sπ2+1π
145 144 fveq2d s¬smod2π=0smodπ=0cosks=cosk2sπ2+1π
146 145 sumeq2sdv s¬smod2π=0smodπ=0k=1Ncosks=k=1Ncosk2sπ2+1π
147 146 oveq2d s¬smod2π=0smodπ=012+k=1Ncosks=12+k=1Ncosk2sπ2+1π
148 147 oveq1d s¬smod2π=0smodπ=012+k=1Ncosksπ=12+k=1Ncosk2sπ2+1ππ
149 148 adantlll φs¬smod2π=0smodπ=012+k=1Ncosksπ=12+k=1Ncosk2sπ2+1ππ
150 2 ad2antrr φssmodπ=0N
151 17 a1i sπ
152 127 151 97 redivcld ssπ
153 152 rehalfcld ssπ2
154 153 flcld ssπ2
155 154 ad2antlr φssmodπ=0sπ2
156 eqid 2sπ2+1π=2sπ2+1π
157 150 155 156 dirkertrigeqlem3 φssmodπ=012+k=1Ncosk2sπ2+1ππ=sinN+122sπ2+1π2πsin2sπ2+1π2
158 157 adantlr φs¬smod2π=0smodπ=012+k=1Ncosk2sπ2+1ππ=sinN+122sπ2+1π2πsin2sπ2+1π2
159 141 adantlll φs¬smod2π=0smodπ=0sπ=2sπ2+1
160 159 eqcomd φs¬smod2π=0smodπ=02sπ2+1=sπ
161 160 oveq1d φs¬smod2π=0smodπ=02sπ2+1π=sππ
162 161 oveq2d φs¬smod2π=0smodπ=0N+122sπ2+1π=N+12sππ
163 162 fveq2d φs¬smod2π=0smodπ=0sinN+122sπ2+1π=sinN+12sππ
164 161 fvoveq1d φs¬smod2π=0smodπ=0sin2sπ2+1π2=sinsππ2
165 164 oveq2d φs¬smod2π=0smodπ=02πsin2sπ2+1π2=2πsinsππ2
166 163 165 oveq12d φs¬smod2π=0smodπ=0sinN+122sπ2+1π2πsin2sπ2+1π2=sinN+12sππ2πsinsππ2
167 98 oveq2d sN+12sππ=N+12s
168 167 fveq2d ssinN+12sππ=sinN+12s
169 98 fvoveq1d ssinsππ2=sins2
170 169 oveq2d s2πsinsππ2=2πsins2
171 168 170 oveq12d ssinN+12sππ2πsinsππ2=sinN+12s2πsins2
172 171 adantl φssinN+12sππ2πsinsππ2=sinN+12s2πsins2
173 172 ad2antrr φs¬smod2π=0smodπ=0sinN+12sππ2πsinsππ2=sinN+12s2πsins2
174 166 173 eqtrd φs¬smod2π=0smodπ=0sinN+122sπ2+1π2πsin2sπ2+1π2=sinN+12s2πsins2
175 149 158 174 3eqtrrd φs¬smod2π=0smodπ=0sinN+12s2πsins2=12+k=1Ncosksπ
176 simplr φs¬smodπ=0s
177 simpr φs¬smodπ=0¬smodπ=0
178 176 41 103 sylancl φs¬smodπ=0smodπ=0sπ
179 177 178 mtbid φs¬smodπ=0¬sπ
180 176 recnd φs¬smodπ=0s
181 sineq0 ssins=0sπ
182 180 181 syl φs¬smodπ=0sins=0sπ
183 179 182 mtbird φs¬smodπ=0¬sins=0
184 183 neqned φs¬smodπ=0sins0
185 2 ad2antrr φs¬smodπ=0N
186 176 184 185 dirkertrigeqlem2 φs¬smodπ=012+k=1Ncosksπ=sinN+12s2πsins2
187 186 eqcomd φs¬smodπ=0sinN+12s2πsins2=12+k=1Ncosksπ
188 187 adantlr φs¬smod2π=0¬smodπ=0sinN+12s2πsins2=12+k=1Ncosksπ
189 175 188 pm2.61dan φs¬smod2π=0sinN+12s2πsins2=12+k=1Ncosksπ
190 95 189 eqtr2d φs¬smod2π=012+k=1Ncosksπ=ifsmod2π=02 N+12πsinN+12s2πsins2
191 93 190 pm2.61dan φs12+k=1Ncosksπ=ifsmod2π=02 N+12πsinN+12s2πsins2
192 191 mpteq2dva φs12+k=1Ncosksπ=sifsmod2π=02 N+12πsinN+12s2πsins2
193 4 192 eqtr2id φsifsmod2π=02 N+12πsinN+12s2πsins2=H
194 5 7 193 3eqtrd φF=H