Metamath Proof Explorer


Theorem dstrvprob

Description: The distribution of a random variable is a probability law. (TODO: could be shortened using dstrvval ). (Contributed by Thierry Arnoux, 10-Feb-2017)

Ref Expression
Hypotheses dstrvprob.1 φPProb
dstrvprob.2 φXRndVarP
dstrvprob.3 φD=a𝔅PXERV/ca
Assertion dstrvprob φDProb

Proof

Step Hyp Ref Expression
1 dstrvprob.1 φPProb
2 dstrvprob.2 φXRndVarP
3 dstrvprob.3 φD=a𝔅PXERV/ca
4 1 adantr φa𝔅PProb
5 2 adantr φa𝔅XRndVarP
6 simpr φa𝔅a𝔅
7 4 5 6 orvcelel φa𝔅XERV/cadomP
8 prob01 PProbXERV/cadomPPXERV/ca01
9 4 7 8 syl2anc φa𝔅PXERV/ca01
10 elunitrn PXERV/ca01PXERV/ca
11 10 rexrd PXERV/ca01PXERV/ca*
12 elunitge0 PXERV/ca010PXERV/ca
13 elxrge0 PXERV/ca0+∞PXERV/ca*0PXERV/ca
14 11 12 13 sylanbrc PXERV/ca01PXERV/ca0+∞
15 9 14 syl φa𝔅PXERV/ca0+∞
16 3 15 fmpt3d φD:𝔅0+∞
17 simpr φa=a=
18 17 oveq2d φa=XERV/ca=XERV/c
19 18 fveq2d φa=PXERV/ca=PXERV/c
20 brsigarn 𝔅sigAlgebra
21 elrnsiga 𝔅sigAlgebra𝔅ransigAlgebra
22 0elsiga 𝔅ransigAlgebra𝔅
23 20 21 22 mp2b 𝔅
24 23 a1i φ𝔅
25 1 2 24 orvcelel φXERV/cdomP
26 1 25 probvalrnd φPXERV/c
27 3 19 24 26 fvmptd φD=PXERV/c
28 1 2 24 orvcelval φXERV/c=X-1
29 28 fveq2d φPXERV/c=PX-1
30 ima0 X-1=
31 30 fveq2i PX-1=P
32 probnul PProbP=0
33 1 32 syl φP=0
34 31 33 eqtrid φPX-1=0
35 27 29 34 3eqtrd φD=0
36 1 2 rrvvf φX:domP
37 36 ad2antrr φx𝒫𝔅xωDisjaxaX:domP
38 37 ffund φx𝒫𝔅xωDisjaxaFunX
39 unipreima FunXX-1x=axX-1a
40 39 fveq2d FunXPX-1x=PaxX-1a
41 38 40 syl φx𝒫𝔅xωDisjaxaPX-1x=PaxX-1a
42 1 ad2antrr φx𝒫𝔅xωDisjaxaPProb
43 domprobmeas PProbPmeasuresdomP
44 42 43 syl φx𝒫𝔅xωDisjaxaPmeasuresdomP
45 nfv aφx𝒫𝔅
46 nfv axω
47 nfdisj1 aDisjaxa
48 46 47 nfan axωDisjaxa
49 45 48 nfan aφx𝒫𝔅xωDisjaxa
50 simplll φx𝒫𝔅xωDisjaxaaxφ
51 simpr φx𝒫𝔅xωDisjaxaaxax
52 simpllr φx𝒫𝔅xωDisjaxaaxx𝒫𝔅
53 elelpwi axx𝒫𝔅a𝔅
54 51 52 53 syl2anc φx𝒫𝔅xωDisjaxaaxa𝔅
55 1 2 rrvfinvima φa𝔅X-1adomP
56 55 r19.21bi φa𝔅X-1adomP
57 50 54 56 syl2anc φx𝒫𝔅xωDisjaxaaxX-1adomP
58 57 ex φx𝒫𝔅xωDisjaxaaxX-1adomP
59 49 58 ralrimi φx𝒫𝔅xωDisjaxaaxX-1adomP
60 simprl φx𝒫𝔅xωDisjaxaxω
61 simprr φx𝒫𝔅xωDisjaxaDisjaxa
62 disjpreima FunXDisjaxaDisjaxX-1a
63 38 61 62 syl2anc φx𝒫𝔅xωDisjaxaDisjaxX-1a
64 measvuni PmeasuresdomPaxX-1adomPxωDisjaxX-1aPaxX-1a=*axPX-1a
65 44 59 60 63 64 syl112anc φx𝒫𝔅xωDisjaxaPaxX-1a=*axPX-1a
66 41 65 eqtrd φx𝒫𝔅xωDisjaxaPX-1x=*axPX-1a
67 2 ad2antrr φx𝒫𝔅xωDisjaxaXRndVarP
68 3 ad2antrr φx𝒫𝔅xωDisjaxaD=a𝔅PXERV/ca
69 20 21 mp1i φx𝒫𝔅xωDisjaxa𝔅ransigAlgebra
70 simplr φx𝒫𝔅xωDisjaxax𝒫𝔅
71 sigaclcu 𝔅ransigAlgebrax𝒫𝔅xωx𝔅
72 69 70 60 71 syl3anc φx𝒫𝔅xωDisjaxax𝔅
73 42 67 68 72 dstrvval φx𝒫𝔅xωDisjaxaDx=PX-1x
74 3 9 fvmpt2d φa𝔅Da=PXERV/ca
75 50 54 74 syl2anc φx𝒫𝔅xωDisjaxaaxDa=PXERV/ca
76 42 adantr φx𝒫𝔅xωDisjaxaaxPProb
77 67 adantr φx𝒫𝔅xωDisjaxaaxXRndVarP
78 76 77 54 orvcelval φx𝒫𝔅xωDisjaxaaxXERV/ca=X-1a
79 78 fveq2d φx𝒫𝔅xωDisjaxaaxPXERV/ca=PX-1a
80 75 79 eqtrd φx𝒫𝔅xωDisjaxaaxDa=PX-1a
81 80 ex φx𝒫𝔅xωDisjaxaaxDa=PX-1a
82 49 81 ralrimi φx𝒫𝔅xωDisjaxaaxDa=PX-1a
83 49 82 esumeq2d φx𝒫𝔅xωDisjaxa*axDa=*axPX-1a
84 66 73 83 3eqtr4d φx𝒫𝔅xωDisjaxaDx=*axDa
85 84 ex φx𝒫𝔅xωDisjaxaDx=*axDa
86 85 ralrimiva φx𝒫𝔅xωDisjaxaDx=*axDa
87 ismeas 𝔅ransigAlgebraDmeasures𝔅D:𝔅0+∞D=0x𝒫𝔅xωDisjaxaDx=*axDa
88 20 21 87 mp2b Dmeasures𝔅D:𝔅0+∞D=0x𝒫𝔅xωDisjaxaDx=*axDa
89 16 35 86 88 syl3anbrc φDmeasures𝔅
90 3 dmeqd φdomD=doma𝔅PXERV/ca
91 15 ralrimiva φa𝔅PXERV/ca0+∞
92 dmmptg a𝔅PXERV/ca0+∞doma𝔅PXERV/ca=𝔅
93 91 92 syl φdoma𝔅PXERV/ca=𝔅
94 90 93 eqtrd φdomD=𝔅
95 94 fveq2d φmeasuresdomD=measures𝔅
96 89 95 eleqtrrd φDmeasuresdomD
97 measbasedom DranmeasuresDmeasuresdomD
98 96 97 sylibr φDranmeasures
99 94 unieqd φdomD=𝔅
100 unibrsiga 𝔅=
101 99 100 eqtrdi φdomD=
102 101 fveq2d φDdomD=D
103 simpr φa=a=
104 103 oveq2d φa=XERV/ca=XERV/c
105 baselsiga 𝔅sigAlgebra𝔅
106 20 105 mp1i φ𝔅
107 1 2 106 orvcelval φXERV/c=X-1
108 107 adantr φa=XERV/c=X-1
109 104 108 eqtrd φa=XERV/ca=X-1
110 109 fveq2d φa=PXERV/ca=PX-1
111 fimacnv X:domPX-1=domP
112 36 111 syl φX-1=domP
113 112 fveq2d φPX-1=PdomP
114 probtot PProbPdomP=1
115 1 114 syl φPdomP=1
116 113 115 eqtrd φPX-1=1
117 116 adantr φa=PX-1=1
118 110 117 eqtrd φa=PXERV/ca=1
119 1red φ1
120 3 118 106 119 fvmptd φD=1
121 102 120 eqtrd φDdomD=1
122 elprob DProbDranmeasuresDdomD=1
123 98 121 122 sylanbrc φDProb