| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dstrvprob.1 |
|
| 2 |
|
dstrvprob.2 |
|
| 3 |
|
dstrvprob.3 |
|
| 4 |
1
|
adantr |
|
| 5 |
2
|
adantr |
|
| 6 |
|
simpr |
|
| 7 |
4 5 6
|
orvcelel |
|
| 8 |
|
prob01 |
|
| 9 |
4 7 8
|
syl2anc |
|
| 10 |
|
elunitrn |
|
| 11 |
10
|
rexrd |
|
| 12 |
|
elunitge0 |
|
| 13 |
|
elxrge0 |
|
| 14 |
11 12 13
|
sylanbrc |
|
| 15 |
9 14
|
syl |
|
| 16 |
3 15
|
fmpt3d |
|
| 17 |
|
simpr |
|
| 18 |
17
|
oveq2d |
|
| 19 |
18
|
fveq2d |
|
| 20 |
|
brsigarn |
|
| 21 |
|
elrnsiga |
|
| 22 |
|
0elsiga |
|
| 23 |
20 21 22
|
mp2b |
|
| 24 |
23
|
a1i |
|
| 25 |
1 2 24
|
orvcelel |
|
| 26 |
1 25
|
probvalrnd |
|
| 27 |
3 19 24 26
|
fvmptd |
|
| 28 |
1 2 24
|
orvcelval |
|
| 29 |
28
|
fveq2d |
|
| 30 |
|
ima0 |
|
| 31 |
30
|
fveq2i |
|
| 32 |
|
probnul |
|
| 33 |
1 32
|
syl |
|
| 34 |
31 33
|
eqtrid |
|
| 35 |
27 29 34
|
3eqtrd |
|
| 36 |
1 2
|
rrvvf |
|
| 37 |
36
|
ad2antrr |
|
| 38 |
37
|
ffund |
|
| 39 |
|
unipreima |
|
| 40 |
39
|
fveq2d |
|
| 41 |
38 40
|
syl |
|
| 42 |
1
|
ad2antrr |
|
| 43 |
|
domprobmeas |
|
| 44 |
42 43
|
syl |
|
| 45 |
|
nfv |
|
| 46 |
|
nfv |
|
| 47 |
|
nfdisj1 |
|
| 48 |
46 47
|
nfan |
|
| 49 |
45 48
|
nfan |
|
| 50 |
|
simplll |
|
| 51 |
|
simpr |
|
| 52 |
|
simpllr |
|
| 53 |
|
elelpwi |
|
| 54 |
51 52 53
|
syl2anc |
|
| 55 |
1 2
|
rrvfinvima |
|
| 56 |
55
|
r19.21bi |
|
| 57 |
50 54 56
|
syl2anc |
|
| 58 |
57
|
ex |
|
| 59 |
49 58
|
ralrimi |
|
| 60 |
|
simprl |
|
| 61 |
|
simprr |
|
| 62 |
|
disjpreima |
|
| 63 |
38 61 62
|
syl2anc |
|
| 64 |
|
measvuni |
|
| 65 |
44 59 60 63 64
|
syl112anc |
|
| 66 |
41 65
|
eqtrd |
|
| 67 |
2
|
ad2antrr |
|
| 68 |
3
|
ad2antrr |
|
| 69 |
20 21
|
mp1i |
|
| 70 |
|
simplr |
|
| 71 |
|
sigaclcu |
|
| 72 |
69 70 60 71
|
syl3anc |
|
| 73 |
42 67 68 72
|
dstrvval |
|
| 74 |
3 9
|
fvmpt2d |
|
| 75 |
50 54 74
|
syl2anc |
|
| 76 |
42
|
adantr |
|
| 77 |
67
|
adantr |
|
| 78 |
76 77 54
|
orvcelval |
|
| 79 |
78
|
fveq2d |
|
| 80 |
75 79
|
eqtrd |
|
| 81 |
80
|
ex |
|
| 82 |
49 81
|
ralrimi |
|
| 83 |
49 82
|
esumeq2d |
|
| 84 |
66 73 83
|
3eqtr4d |
|
| 85 |
84
|
ex |
|
| 86 |
85
|
ralrimiva |
|
| 87 |
|
ismeas |
|
| 88 |
20 21 87
|
mp2b |
|
| 89 |
16 35 86 88
|
syl3anbrc |
|
| 90 |
3
|
dmeqd |
|
| 91 |
15
|
ralrimiva |
|
| 92 |
|
dmmptg |
|
| 93 |
91 92
|
syl |
|
| 94 |
90 93
|
eqtrd |
|
| 95 |
94
|
fveq2d |
|
| 96 |
89 95
|
eleqtrrd |
|
| 97 |
|
measbasedom |
|
| 98 |
96 97
|
sylibr |
|
| 99 |
94
|
unieqd |
|
| 100 |
|
unibrsiga |
|
| 101 |
99 100
|
eqtrdi |
|
| 102 |
101
|
fveq2d |
|
| 103 |
|
simpr |
|
| 104 |
103
|
oveq2d |
|
| 105 |
|
baselsiga |
|
| 106 |
20 105
|
mp1i |
|
| 107 |
1 2 106
|
orvcelval |
|
| 108 |
107
|
adantr |
|
| 109 |
104 108
|
eqtrd |
|
| 110 |
109
|
fveq2d |
|
| 111 |
|
fimacnv |
|
| 112 |
36 111
|
syl |
|
| 113 |
112
|
fveq2d |
|
| 114 |
|
probtot |
|
| 115 |
1 114
|
syl |
|
| 116 |
113 115
|
eqtrd |
|
| 117 |
116
|
adantr |
|
| 118 |
110 117
|
eqtrd |
|
| 119 |
|
1red |
|
| 120 |
3 118 106 119
|
fvmptd |
|
| 121 |
102 120
|
eqtrd |
|
| 122 |
|
elprob |
|
| 123 |
98 121 122
|
sylanbrc |
|