Metamath Proof Explorer


Theorem dvcnp2

Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses dvcnp.j J=K𝑡A
dvcnp.k K=TopOpenfld
Assertion dvcnp2 SF:AASBdomFSFJCnPKB

Proof

Step Hyp Ref Expression
1 dvcnp.j J=K𝑡A
2 dvcnp.k K=TopOpenfld
3 simpl2 SF:AASBFSyF:A
4 3 ffvelcdmda SF:AASBFSyzAFz
5 2 cnfldtop KTop
6 simpl1 SF:AASBFSyS
7 cnex V
8 ssexg SVSV
9 6 7 8 sylancl SF:AASBFSySV
10 resttop KTopSVK𝑡STop
11 5 9 10 sylancr SF:AASBFSyK𝑡STop
12 simpl3 SF:AASBFSyAS
13 2 cnfldtopon KTopOn
14 resttopon KTopOnSK𝑡STopOnS
15 13 6 14 sylancr SF:AASBFSyK𝑡STopOnS
16 toponuni K𝑡STopOnSS=K𝑡S
17 15 16 syl SF:AASBFSyS=K𝑡S
18 12 17 sseqtrd SF:AASBFSyAK𝑡S
19 eqid K𝑡S=K𝑡S
20 19 ntrss2 K𝑡STopAK𝑡SintK𝑡SAA
21 11 18 20 syl2anc SF:AASBFSyintK𝑡SAA
22 eqid K𝑡S=K𝑡S
23 eqid zABFzFBzB=zABFzFBzB
24 simp1 SF:AASS
25 simp2 SF:AASF:A
26 simp3 SF:AASAS
27 22 2 23 24 25 26 eldv SF:AASBFSyBintK𝑡SAyzABFzFBzBlimB
28 27 simprbda SF:AASBFSyBintK𝑡SA
29 21 28 sseldd SF:AASBFSyBA
30 3 29 ffvelcdmd SF:AASBFSyFB
31 30 adantr SF:AASBFSyzAFB
32 4 31 subcld SF:AASBFSyzAFzFB
33 ssid
34 33 a1i SF:AASBFSy
35 txtopon KTopOnKTopOnK×tKTopOn×
36 13 13 35 mp2an K×tKTopOn×
37 36 toponrestid K×tK=K×tK𝑡×
38 12 6 sstrd SF:AASBFSyA
39 3 38 29 dvlem SF:AASBFSyzABFzFBzB
40 38 ssdifssd SF:AASBFSyAB
41 40 sselda SF:AASBFSyzABz
42 38 29 sseldd SF:AASBFSyB
43 42 adantr SF:AASBFSyzABB
44 41 43 subcld SF:AASBFSyzABzB
45 27 simplbda SF:AASBFSyyzABFzFBzBlimB
46 limcresi zAzBlimBzAzBABlimB
47 difss ABA
48 resmpt ABAzAzBAB=zABzB
49 47 48 ax-mp zAzBAB=zABzB
50 49 oveq1i zAzBABlimB=zABzBlimB
51 46 50 sseqtri zAzBlimBzABzBlimB
52 42 subidd SF:AASBFSyBB=0
53 2 subcn K×tKCnK
54 53 a1i SF:AASBFSyK×tKCnK
55 cncfmptid AzAz:Acn
56 38 33 55 sylancl SF:AASBFSyzAz:Acn
57 cncfmptc BAzAB:Acn
58 42 38 34 57 syl3anc SF:AASBFSyzAB:Acn
59 2 54 56 58 cncfmpt2f SF:AASBFSyzAzB:Acn
60 oveq1 z=BzB=BB
61 59 29 60 cnmptlimc SF:AASBFSyBBzAzBlimB
62 52 61 eqeltrrd SF:AASBFSy0zAzBlimB
63 51 62 sselid SF:AASBFSy0zABzBlimB
64 2 mulcn ×K×tKCnK
65 24 25 26 dvcl SF:AASBFSyy
66 0cn 0
67 opelxpi y0y0×
68 65 66 67 sylancl SF:AASBFSyy0×
69 36 toponunii ×=K×tK
70 69 cncnpi ×K×tKCnKy0××K×tKCnPKy0
71 64 68 70 sylancr SF:AASBFSy×K×tKCnPKy0
72 39 44 34 34 2 37 45 63 71 limccnp2 SF:AASBFSyy0zABFzFBzBzBlimB
73 65 mul01d SF:AASBFSyy0=0
74 3 adantr SF:AASBFSyzABF:A
75 simpr SF:AASBFSyzABzAB
76 47 75 sselid SF:AASBFSyzABzA
77 74 76 ffvelcdmd SF:AASBFSyzABFz
78 30 adantr SF:AASBFSyzABFB
79 77 78 subcld SF:AASBFSyzABFzFB
80 eldifsni zABzB
81 80 adantl SF:AASBFSyzABzB
82 41 43 81 subne0d SF:AASBFSyzABzB0
83 79 44 82 divcan1d SF:AASBFSyzABFzFBzBzB=FzFB
84 83 mpteq2dva SF:AASBFSyzABFzFBzBzB=zABFzFB
85 84 oveq1d SF:AASBFSyzABFzFBzBzBlimB=zABFzFBlimB
86 72 73 85 3eltr3d SF:AASBFSy0zABFzFBlimB
87 32 fmpttd SF:AASBFSyzAFzFB:A
88 87 limcdif SF:AASBFSyzAFzFBlimB=zAFzFBABlimB
89 resmpt ABAzAFzFBAB=zABFzFB
90 47 89 ax-mp zAFzFBAB=zABFzFB
91 90 oveq1i zAFzFBABlimB=zABFzFBlimB
92 88 91 eqtrdi SF:AASBFSyzAFzFBlimB=zABFzFBlimB
93 86 92 eleqtrrd SF:AASBFSy0zAFzFBlimB
94 cncfmptc FBAzAFB:Acn
95 30 38 34 94 syl3anc SF:AASBFSyzAFB:Acn
96 eqidd z=BFB=FB
97 95 29 96 cnmptlimc SF:AASBFSyFBzAFBlimB
98 2 addcn +K×tKCnK
99 opelxpi 0FB0FB×
100 66 30 99 sylancr SF:AASBFSy0FB×
101 69 cncnpi +K×tKCnK0FB×+K×tKCnPK0FB
102 98 100 101 sylancr SF:AASBFSy+K×tKCnPK0FB
103 32 31 34 34 2 37 93 97 102 limccnp2 SF:AASBFSy0+FBzAFz-FB+FBlimB
104 30 addlidd SF:AASBFSy0+FB=FB
105 4 31 npcand SF:AASBFSyzAFz-FB+FB=Fz
106 105 mpteq2dva SF:AASBFSyzAFz-FB+FB=zAFz
107 3 feqmptd SF:AASBFSyF=zAFz
108 106 107 eqtr4d SF:AASBFSyzAFz-FB+FB=F
109 108 oveq1d SF:AASBFSyzAFz-FB+FBlimB=FlimB
110 103 104 109 3eltr3d SF:AASBFSyFBFlimB
111 2 1 cnplimc ABAFJCnPKBF:AFBFlimB
112 38 29 111 syl2anc SF:AASBFSyFJCnPKBF:AFBFlimB
113 3 110 112 mpbir2and SF:AASBFSyFJCnPKB
114 113 ex SF:AASBFSyFJCnPKB
115 114 exlimdv SF:AASyBFSyFJCnPKB
116 eldmg BdomFSBdomFSyBFSy
117 116 ibi BdomFSyBFSy
118 115 117 impel SF:AASBdomFSFJCnPKB