| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvcnp.j |  | 
						
							| 2 |  | dvcnp.k |  | 
						
							| 3 |  | simpl2 |  | 
						
							| 4 | 3 | ffvelcdmda |  | 
						
							| 5 | 2 | cnfldtop |  | 
						
							| 6 |  | simpl1 |  | 
						
							| 7 |  | cnex |  | 
						
							| 8 |  | ssexg |  | 
						
							| 9 | 6 7 8 | sylancl |  | 
						
							| 10 |  | resttop |  | 
						
							| 11 | 5 9 10 | sylancr |  | 
						
							| 12 |  | simpl3 |  | 
						
							| 13 | 2 | cnfldtopon |  | 
						
							| 14 |  | resttopon |  | 
						
							| 15 | 13 6 14 | sylancr |  | 
						
							| 16 |  | toponuni |  | 
						
							| 17 | 15 16 | syl |  | 
						
							| 18 | 12 17 | sseqtrd |  | 
						
							| 19 |  | eqid |  | 
						
							| 20 | 19 | ntrss2 |  | 
						
							| 21 | 11 18 20 | syl2anc |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | simp1 |  | 
						
							| 25 |  | simp2 |  | 
						
							| 26 |  | simp3 |  | 
						
							| 27 | 22 2 23 24 25 26 | eldv |  | 
						
							| 28 | 27 | simprbda |  | 
						
							| 29 | 21 28 | sseldd |  | 
						
							| 30 | 3 29 | ffvelcdmd |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 | 4 31 | subcld |  | 
						
							| 33 |  | ssidd |  | 
						
							| 34 |  | txtopon |  | 
						
							| 35 | 13 13 34 | mp2an |  | 
						
							| 36 | 35 | toponrestid |  | 
						
							| 37 | 12 6 | sstrd |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 22 2 38 24 25 26 | eldv |  | 
						
							| 40 | 39 | simprbda |  | 
						
							| 41 | 21 40 | sseldd |  | 
						
							| 42 | 3 37 41 | dvlem |  | 
						
							| 43 | 37 | ssdifssd |  | 
						
							| 44 | 43 | sselda |  | 
						
							| 45 | 37 41 | sseldd |  | 
						
							| 46 | 45 | adantr |  | 
						
							| 47 | 44 46 | subcld |  | 
						
							| 48 | 27 | simplbda |  | 
						
							| 49 |  | limcresi |  | 
						
							| 50 |  | difss |  | 
						
							| 51 |  | resmpt |  | 
						
							| 52 | 50 51 | ax-mp |  | 
						
							| 53 | 52 | oveq1i |  | 
						
							| 54 | 49 53 | sseqtri |  | 
						
							| 55 | 45 | subidd |  | 
						
							| 56 |  | ssid |  | 
						
							| 57 |  | cncfmptid |  | 
						
							| 58 | 37 56 57 | sylancl |  | 
						
							| 59 |  | cncfmptc |  | 
						
							| 60 | 45 37 33 59 | syl3anc |  | 
						
							| 61 | 58 60 | subcncf |  | 
						
							| 62 |  | oveq1 |  | 
						
							| 63 | 61 41 62 | cnmptlimc |  | 
						
							| 64 | 55 63 | eqeltrrd |  | 
						
							| 65 | 54 64 | sselid |  | 
						
							| 66 | 2 | mpomulcn |  | 
						
							| 67 | 24 25 26 | dvcl |  | 
						
							| 68 |  | 0cn |  | 
						
							| 69 |  | opelxpi |  | 
						
							| 70 | 67 68 69 | sylancl |  | 
						
							| 71 | 35 | toponunii |  | 
						
							| 72 | 71 | cncnpi |  | 
						
							| 73 | 66 70 72 | sylancr |  | 
						
							| 74 | 42 47 33 33 2 36 48 65 73 | limccnp2 |  | 
						
							| 75 |  | df-mpt |  | 
						
							| 76 | 75 | oveq1i |  | 
						
							| 77 | 74 76 | eleqtrdi |  | 
						
							| 78 |  | 0cnd |  | 
						
							| 79 |  | ovmpot |  | 
						
							| 80 | 67 78 79 | syl2anc |  | 
						
							| 81 | 3 37 29 | dvlem |  | 
						
							| 82 | 37 29 | sseldd |  | 
						
							| 83 | 82 | adantr |  | 
						
							| 84 | 44 83 | subcld |  | 
						
							| 85 |  | ovmpot |  | 
						
							| 86 | 81 84 85 | syl2anc |  | 
						
							| 87 | 86 | eqeq2d |  | 
						
							| 88 | 87 | pm5.32da |  | 
						
							| 89 | 88 | opabbidv |  | 
						
							| 90 |  | df-mpt |  | 
						
							| 91 | 89 90 | eqtr4di |  | 
						
							| 92 | 91 | oveq1d |  | 
						
							| 93 | 77 80 92 | 3eltr3d |  | 
						
							| 94 | 67 | mul01d |  | 
						
							| 95 | 3 | adantr |  | 
						
							| 96 |  | simpr |  | 
						
							| 97 | 50 96 | sselid |  | 
						
							| 98 | 95 97 | ffvelcdmd |  | 
						
							| 99 | 30 | adantr |  | 
						
							| 100 | 98 99 | subcld |  | 
						
							| 101 |  | eldifsni |  | 
						
							| 102 | 101 | adantl |  | 
						
							| 103 | 44 83 102 | subne0d |  | 
						
							| 104 | 100 84 103 | divcan1d |  | 
						
							| 105 | 104 | mpteq2dva |  | 
						
							| 106 | 105 | oveq1d |  | 
						
							| 107 | 93 94 106 | 3eltr3d |  | 
						
							| 108 | 32 | fmpttd |  | 
						
							| 109 | 108 | limcdif |  | 
						
							| 110 |  | resmpt |  | 
						
							| 111 | 50 110 | ax-mp |  | 
						
							| 112 | 111 | oveq1i |  | 
						
							| 113 | 109 112 | eqtrdi |  | 
						
							| 114 | 107 113 | eleqtrrd |  | 
						
							| 115 |  | cncfmptc |  | 
						
							| 116 | 30 37 33 115 | syl3anc |  | 
						
							| 117 |  | eqidd |  | 
						
							| 118 | 116 29 117 | cnmptlimc |  | 
						
							| 119 | 2 | addcn |  | 
						
							| 120 |  | opelxpi |  | 
						
							| 121 | 68 30 120 | sylancr |  | 
						
							| 122 | 71 | cncnpi |  | 
						
							| 123 | 119 121 122 | sylancr |  | 
						
							| 124 | 32 31 33 33 2 36 114 118 123 | limccnp2 |  | 
						
							| 125 | 30 | addlidd |  | 
						
							| 126 | 4 31 | npcand |  | 
						
							| 127 | 126 | mpteq2dva |  | 
						
							| 128 | 3 | feqmptd |  | 
						
							| 129 | 127 128 | eqtr4d |  | 
						
							| 130 | 129 | oveq1d |  | 
						
							| 131 | 124 125 130 | 3eltr3d |  | 
						
							| 132 | 2 1 | cnplimc |  | 
						
							| 133 | 37 29 132 | syl2anc |  | 
						
							| 134 | 3 131 133 | mpbir2and |  | 
						
							| 135 | 134 | ex |  | 
						
							| 136 | 135 | exlimdv |  | 
						
							| 137 |  | eldmg |  | 
						
							| 138 | 137 | ibi |  | 
						
							| 139 | 136 138 | impel |  |