Metamath Proof Explorer


Theorem dvne0

Description: A function on a closed interval with nonzero derivative is either monotone increasing or monotone decreasing. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses dvne0.a φA
dvne0.b φB
dvne0.f φF:ABcn
dvne0.d φdomF=AB
dvne0.z φ¬0ranF
Assertion dvne0 φFIsom<,<ABranFFIsom<,<-1ABranF

Proof

Step Hyp Ref Expression
1 dvne0.a φA
2 dvne0.b φB
3 dvne0.f φF:ABcn
4 dvne0.d φdomF=AB
5 dvne0.z φ¬0ranF
6 eleq1 x=0xranF0ranF
7 6 notbid x=0¬xranF¬0ranF
8 5 7 syl5ibrcom φx=0¬xranF
9 8 necon2ad φxranFx0
10 9 imp φxranFx0
11 cncff F:ABcnF:AB
12 3 11 syl φF:AB
13 iccssre ABAB
14 1 2 13 syl2anc φAB
15 dvfre F:ABABF:domF
16 12 14 15 syl2anc φF:domF
17 16 frnd φranF
18 17 sselda φxranFx
19 0re 0
20 lttri2 x0x0x<00<x
21 18 19 20 sylancl φxranFx0x<00<x
22 0xr 0*
23 elioomnf 0*x−∞0xx<0
24 22 23 ax-mp x−∞0xx<0
25 24 baib xx−∞0x<0
26 elrp x+x0<x
27 26 baib xx+0<x
28 25 27 orbi12d xx−∞0x+x<00<x
29 18 28 syl φxranFx−∞0x+x<00<x
30 21 29 bitr4d φxranFx0x−∞0x+
31 10 30 mpbid φxranFx−∞0x+
32 elun x−∞0+x−∞0x+
33 31 32 sylibr φxranFx−∞0+
34 33 ex φxranFx−∞0+
35 34 ssrdv φranF−∞0+
36 disjssun ranF−∞0=ranF−∞0+ranF+
37 35 36 syl5ibcom φranF−∞0=ranF+
38 37 imp φranF−∞0=ranF+
39 1 adantr φranF+A
40 2 adantr φranF+B
41 3 adantr φranF+F:ABcn
42 4 feq2d φF:domFF:AB
43 16 42 mpbid φF:AB
44 43 ffnd φFFnAB
45 44 anim1i φranF+FFnABranF+
46 df-f F:AB+FFnABranF+
47 45 46 sylibr φranF+F:AB+
48 39 40 41 47 dvgt0 φranF+FIsom<,<ABranF
49 48 orcd φranF+FIsom<,<ABranFFIsom<,<-1ABranF
50 38 49 syldan φranF−∞0=FIsom<,<ABranFFIsom<,<-1ABranF
51 n0 ranF−∞0xxranF−∞0
52 elin xranF−∞0xranFx−∞0
53 fvelrnb FFnABxranFyABFy=x
54 44 53 syl φxranFyABFy=x
55 1 adantr φyABFy−∞0A
56 2 adantr φyABFy−∞0B
57 3 adantr φyABFy−∞0F:ABcn
58 44 adantr φyABFy−∞0FFnAB
59 43 adantr φyABFy−∞0F:AB
60 59 ffvelcdmda φyABFy−∞0zABFz
61 5 ad2antrr φyABFy−∞0zAB¬0ranF
62 simplrl φyABFy−∞0zAB0FzyAB
63 simprl φyABFy−∞0zAB0FzzAB
64 ioossicc ABAB
65 rescncf ABABF:ABcnFAB:ABcn
66 64 3 65 mpsyl φFAB:ABcn
67 66 ad2antrr φyABFy−∞0zAB0FzFAB:ABcn
68 ax-resscn
69 68 a1i φ
70 fss F:ABF:AB
71 12 68 70 sylancl φF:AB
72 64 14 sstrid φAB
73 eqid TopOpenfld=TopOpenfld
74 73 tgioo2 topGenran.=TopOpenfld𝑡
75 73 74 dvres F:ABABABDFAB=FinttopGenran.AB
76 69 71 14 72 75 syl22anc φDFAB=FinttopGenran.AB
77 retop topGenran.Top
78 iooretop ABtopGenran.
79 isopn3i topGenran.TopABtopGenran.inttopGenran.AB=AB
80 77 78 79 mp2an inttopGenran.AB=AB
81 80 reseq2i FinttopGenran.AB=FAB
82 fnresdm FFnABFAB=DF
83 44 82 syl φFAB=DF
84 81 83 eqtrid φFinttopGenran.AB=DF
85 76 84 eqtrd φDFAB=DF
86 85 dmeqd φdomFAB=domF
87 86 4 eqtrd φdomFAB=AB
88 87 ad2antrr φyABFy−∞0zAB0FzdomFAB=AB
89 62 63 67 88 dvivth φyABFy−∞0zAB0FzFAByFABzranFAB
90 85 ad2antrr φyABFy−∞0zAB0FzDFAB=DF
91 90 fveq1d φyABFy−∞0zAB0FzFABy=Fy
92 90 fveq1d φyABFy−∞0zAB0FzFABz=Fz
93 91 92 oveq12d φyABFy−∞0zAB0FzFAByFABz=FyFz
94 90 rneqd φyABFy−∞0zAB0FzranFAB=ranF
95 89 93 94 3sstr3d φyABFy−∞0zAB0FzFyFzranF
96 19 a1i φyABFy−∞0zAB0Fz0
97 simplrr φyABFy−∞0zAB0FzFy−∞0
98 elioomnf 0*Fy−∞0FyFy<0
99 22 98 ax-mp Fy−∞0FyFy<0
100 97 99 sylib φyABFy−∞0zAB0FzFyFy<0
101 100 simprd φyABFy−∞0zAB0FzFy<0
102 100 simpld φyABFy−∞0zAB0FzFy
103 ltle Fy0Fy<0Fy0
104 102 19 103 sylancl φyABFy−∞0zAB0FzFy<0Fy0
105 101 104 mpd φyABFy−∞0zAB0FzFy0
106 simprr φyABFy−∞0zAB0Fz0Fz
107 63 60 syldan φyABFy−∞0zAB0FzFz
108 elicc2 FyFz0FyFz0Fy00Fz
109 102 107 108 syl2anc φyABFy−∞0zAB0Fz0FyFz0Fy00Fz
110 96 105 106 109 mpbir3and φyABFy−∞0zAB0Fz0FyFz
111 95 110 sseldd φyABFy−∞0zAB0Fz0ranF
112 111 expr φyABFy−∞0zAB0Fz0ranF
113 61 112 mtod φyABFy−∞0zAB¬0Fz
114 ltnle Fz0Fz<0¬0Fz
115 60 19 114 sylancl φyABFy−∞0zABFz<0¬0Fz
116 113 115 mpbird φyABFy−∞0zABFz<0
117 elioomnf 0*Fz−∞0FzFz<0
118 22 117 ax-mp Fz−∞0FzFz<0
119 60 116 118 sylanbrc φyABFy−∞0zABFz−∞0
120 119 ralrimiva φyABFy−∞0zABFz−∞0
121 ffnfv F:AB−∞0FFnABzABFz−∞0
122 58 120 121 sylanbrc φyABFy−∞0F:AB−∞0
123 55 56 57 122 dvlt0 φyABFy−∞0FIsom<,<-1ABranF
124 123 olcd φyABFy−∞0FIsom<,<ABranFFIsom<,<-1ABranF
125 124 expr φyABFy−∞0FIsom<,<ABranFFIsom<,<-1ABranF
126 eleq1 Fy=xFy−∞0x−∞0
127 126 imbi1d Fy=xFy−∞0FIsom<,<ABranFFIsom<,<-1ABranFx−∞0FIsom<,<ABranFFIsom<,<-1ABranF
128 125 127 syl5ibcom φyABFy=xx−∞0FIsom<,<ABranFFIsom<,<-1ABranF
129 128 rexlimdva φyABFy=xx−∞0FIsom<,<ABranFFIsom<,<-1ABranF
130 54 129 sylbid φxranFx−∞0FIsom<,<ABranFFIsom<,<-1ABranF
131 130 impd φxranFx−∞0FIsom<,<ABranFFIsom<,<-1ABranF
132 52 131 biimtrid φxranF−∞0FIsom<,<ABranFFIsom<,<-1ABranF
133 132 exlimdv φxxranF−∞0FIsom<,<ABranFFIsom<,<-1ABranF
134 51 133 biimtrid φranF−∞0FIsom<,<ABranFFIsom<,<-1ABranF
135 134 imp φranF−∞0FIsom<,<ABranFFIsom<,<-1ABranF
136 50 135 pm2.61dane φFIsom<,<ABranFFIsom<,<-1ABranF