| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvne0.a |  | 
						
							| 2 |  | dvne0.b |  | 
						
							| 3 |  | dvne0.f |  | 
						
							| 4 |  | dvne0.d |  | 
						
							| 5 |  | dvne0.z |  | 
						
							| 6 |  | eleq1 |  | 
						
							| 7 | 6 | notbid |  | 
						
							| 8 | 5 7 | syl5ibrcom |  | 
						
							| 9 | 8 | necon2ad |  | 
						
							| 10 | 9 | imp |  | 
						
							| 11 |  | cncff |  | 
						
							| 12 | 3 11 | syl |  | 
						
							| 13 |  | iccssre |  | 
						
							| 14 | 1 2 13 | syl2anc |  | 
						
							| 15 |  | dvfre |  | 
						
							| 16 | 12 14 15 | syl2anc |  | 
						
							| 17 | 16 | frnd |  | 
						
							| 18 | 17 | sselda |  | 
						
							| 19 |  | 0re |  | 
						
							| 20 |  | lttri2 |  | 
						
							| 21 | 18 19 20 | sylancl |  | 
						
							| 22 |  | 0xr |  | 
						
							| 23 |  | elioomnf |  | 
						
							| 24 | 22 23 | ax-mp |  | 
						
							| 25 | 24 | baib |  | 
						
							| 26 |  | elrp |  | 
						
							| 27 | 26 | baib |  | 
						
							| 28 | 25 27 | orbi12d |  | 
						
							| 29 | 18 28 | syl |  | 
						
							| 30 | 21 29 | bitr4d |  | 
						
							| 31 | 10 30 | mpbid |  | 
						
							| 32 |  | elun |  | 
						
							| 33 | 31 32 | sylibr |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 | 34 | ssrdv |  | 
						
							| 36 |  | disjssun |  | 
						
							| 37 | 35 36 | syl5ibcom |  | 
						
							| 38 | 37 | imp |  | 
						
							| 39 | 1 | adantr |  | 
						
							| 40 | 2 | adantr |  | 
						
							| 41 | 3 | adantr |  | 
						
							| 42 | 4 | feq2d |  | 
						
							| 43 | 16 42 | mpbid |  | 
						
							| 44 | 43 | ffnd |  | 
						
							| 45 | 44 | anim1i |  | 
						
							| 46 |  | df-f |  | 
						
							| 47 | 45 46 | sylibr |  | 
						
							| 48 | 39 40 41 47 | dvgt0 |  | 
						
							| 49 | 48 | orcd |  | 
						
							| 50 | 38 49 | syldan |  | 
						
							| 51 |  | n0 |  | 
						
							| 52 |  | elin |  | 
						
							| 53 |  | fvelrnb |  | 
						
							| 54 | 44 53 | syl |  | 
						
							| 55 | 1 | adantr |  | 
						
							| 56 | 2 | adantr |  | 
						
							| 57 | 3 | adantr |  | 
						
							| 58 | 44 | adantr |  | 
						
							| 59 | 43 | adantr |  | 
						
							| 60 | 59 | ffvelcdmda |  | 
						
							| 61 | 5 | ad2antrr |  | 
						
							| 62 |  | simplrl |  | 
						
							| 63 |  | simprl |  | 
						
							| 64 |  | ioossicc |  | 
						
							| 65 |  | rescncf |  | 
						
							| 66 | 64 3 65 | mpsyl |  | 
						
							| 67 | 66 | ad2antrr |  | 
						
							| 68 |  | ax-resscn |  | 
						
							| 69 | 68 | a1i |  | 
						
							| 70 |  | fss |  | 
						
							| 71 | 12 68 70 | sylancl |  | 
						
							| 72 | 64 14 | sstrid |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 |  | tgioo4 |  | 
						
							| 75 | 73 74 | dvres |  | 
						
							| 76 | 69 71 14 72 75 | syl22anc |  | 
						
							| 77 |  | retop |  | 
						
							| 78 |  | iooretop |  | 
						
							| 79 |  | isopn3i |  | 
						
							| 80 | 77 78 79 | mp2an |  | 
						
							| 81 | 80 | reseq2i |  | 
						
							| 82 |  | fnresdm |  | 
						
							| 83 | 44 82 | syl |  | 
						
							| 84 | 81 83 | eqtrid |  | 
						
							| 85 | 76 84 | eqtrd |  | 
						
							| 86 | 85 | dmeqd |  | 
						
							| 87 | 86 4 | eqtrd |  | 
						
							| 88 | 87 | ad2antrr |  | 
						
							| 89 | 62 63 67 88 | dvivth |  | 
						
							| 90 | 85 | ad2antrr |  | 
						
							| 91 | 90 | fveq1d |  | 
						
							| 92 | 90 | fveq1d |  | 
						
							| 93 | 91 92 | oveq12d |  | 
						
							| 94 | 90 | rneqd |  | 
						
							| 95 | 89 93 94 | 3sstr3d |  | 
						
							| 96 | 19 | a1i |  | 
						
							| 97 |  | simplrr |  | 
						
							| 98 |  | elioomnf |  | 
						
							| 99 | 22 98 | ax-mp |  | 
						
							| 100 | 97 99 | sylib |  | 
						
							| 101 | 100 | simprd |  | 
						
							| 102 | 100 | simpld |  | 
						
							| 103 |  | ltle |  | 
						
							| 104 | 102 19 103 | sylancl |  | 
						
							| 105 | 101 104 | mpd |  | 
						
							| 106 |  | simprr |  | 
						
							| 107 | 63 60 | syldan |  | 
						
							| 108 |  | elicc2 |  | 
						
							| 109 | 102 107 108 | syl2anc |  | 
						
							| 110 | 96 105 106 109 | mpbir3and |  | 
						
							| 111 | 95 110 | sseldd |  | 
						
							| 112 | 111 | expr |  | 
						
							| 113 | 61 112 | mtod |  | 
						
							| 114 |  | ltnle |  | 
						
							| 115 | 60 19 114 | sylancl |  | 
						
							| 116 | 113 115 | mpbird |  | 
						
							| 117 |  | elioomnf |  | 
						
							| 118 | 22 117 | ax-mp |  | 
						
							| 119 | 60 116 118 | sylanbrc |  | 
						
							| 120 | 119 | ralrimiva |  | 
						
							| 121 |  | ffnfv |  | 
						
							| 122 | 58 120 121 | sylanbrc |  | 
						
							| 123 | 55 56 57 122 | dvlt0 |  | 
						
							| 124 | 123 | olcd |  | 
						
							| 125 | 124 | expr |  | 
						
							| 126 |  | eleq1 |  | 
						
							| 127 | 126 | imbi1d |  | 
						
							| 128 | 125 127 | syl5ibcom |  | 
						
							| 129 | 128 | rexlimdva |  | 
						
							| 130 | 54 129 | sylbid |  | 
						
							| 131 | 130 | impd |  | 
						
							| 132 | 52 131 | biimtrid |  | 
						
							| 133 | 132 | exlimdv |  | 
						
							| 134 | 51 133 | biimtrid |  | 
						
							| 135 | 134 | imp |  | 
						
							| 136 | 50 135 | pm2.61dane |  |