Metamath Proof Explorer


Theorem evlslem3

Description: Lemma for evlseu . Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses evlslem3.p P=ImPolyR
evlslem3.b B=BaseP
evlslem3.c C=BaseS
evlslem3.k K=BaseR
evlslem3.d D=h0I|h-1Fin
evlslem3.t T=mulGrpS
evlslem3.x ×˙=T
evlslem3.m ·˙=S
evlslem3.v V=ImVarR
evlslem3.e E=pBSbDFpb·˙Tb×˙fG
evlslem3.i φIW
evlslem3.r φRCRing
evlslem3.s φSCRing
evlslem3.f φFRRingHomS
evlslem3.g φG:IC
evlslem3.z 0˙=0R
evlslem3.a φAD
evlslem3.q φHK
Assertion evlslem3 φExDifx=AH0˙=FH·˙TA×˙fG

Proof

Step Hyp Ref Expression
1 evlslem3.p P=ImPolyR
2 evlslem3.b B=BaseP
3 evlslem3.c C=BaseS
4 evlslem3.k K=BaseR
5 evlslem3.d D=h0I|h-1Fin
6 evlslem3.t T=mulGrpS
7 evlslem3.x ×˙=T
8 evlslem3.m ·˙=S
9 evlslem3.v V=ImVarR
10 evlslem3.e E=pBSbDFpb·˙Tb×˙fG
11 evlslem3.i φIW
12 evlslem3.r φRCRing
13 evlslem3.s φSCRing
14 evlslem3.f φFRRingHomS
15 evlslem3.g φG:IC
16 evlslem3.z 0˙=0R
17 evlslem3.a φAD
18 evlslem3.q φHK
19 crngring RCRingRRing
20 12 19 syl φRRing
21 1 5 16 4 11 20 2 18 17 mplmon2cl φxDifx=AH0˙B
22 fveq1 p=xDifx=AH0˙pb=xDifx=AH0˙b
23 22 fveq2d p=xDifx=AH0˙Fpb=FxDifx=AH0˙b
24 23 oveq1d p=xDifx=AH0˙Fpb·˙Tb×˙fG=FxDifx=AH0˙b·˙Tb×˙fG
25 24 mpteq2dv p=xDifx=AH0˙bDFpb·˙Tb×˙fG=bDFxDifx=AH0˙b·˙Tb×˙fG
26 25 oveq2d p=xDifx=AH0˙SbDFpb·˙Tb×˙fG=SbDFxDifx=AH0˙b·˙Tb×˙fG
27 ovex SbDFxDifx=AH0˙b·˙Tb×˙fGV
28 26 10 27 fvmpt xDifx=AH0˙BExDifx=AH0˙=SbDFxDifx=AH0˙b·˙Tb×˙fG
29 21 28 syl φExDifx=AH0˙=SbDFxDifx=AH0˙b·˙Tb×˙fG
30 eqid xDifx=AH0˙=xDifx=AH0˙
31 eqeq1 x=bx=Ab=A
32 31 ifbid x=bifx=AH0˙=ifb=AH0˙
33 simpr φbDbD
34 16 fvexi 0˙V
35 34 a1i φ0˙V
36 18 35 ifexd φifb=AH0˙V
37 36 adantr φbDifb=AH0˙V
38 30 32 33 37 fvmptd3 φbDxDifx=AH0˙b=ifb=AH0˙
39 38 fveq2d φbDFxDifx=AH0˙b=Fifb=AH0˙
40 39 oveq1d φbDFxDifx=AH0˙b·˙Tb×˙fG=Fifb=AH0˙·˙Tb×˙fG
41 40 mpteq2dva φbDFxDifx=AH0˙b·˙Tb×˙fG=bDFifb=AH0˙·˙Tb×˙fG
42 41 oveq2d φSbDFxDifx=AH0˙b·˙Tb×˙fG=SbDFifb=AH0˙·˙Tb×˙fG
43 eqid 0S=0S
44 crngring SCRingSRing
45 13 44 syl φSRing
46 ringmnd SRingSMnd
47 45 46 syl φSMnd
48 ovex 0IV
49 5 48 rabex2 DV
50 49 a1i φDV
51 45 adantr φbDSRing
52 4 3 rhmf FRRingHomSF:KC
53 14 52 syl φF:KC
54 4 16 ring0cl RRing0˙K
55 20 54 syl φ0˙K
56 18 55 ifcld φifb=AH0˙K
57 53 56 ffvelcdmd φFifb=AH0˙C
58 57 adantr φbDFifb=AH0˙C
59 6 3 mgpbas C=BaseT
60 eqid 0T=0T
61 6 crngmgp SCRingTCMnd
62 13 61 syl φTCMnd
63 62 adantr φbDTCMnd
64 11 adantr φbDIW
65 cmnmnd TCMndTMnd
66 62 65 syl φTMnd
67 66 ad2antrr φbDy0zCTMnd
68 simprl φbDy0zCy0
69 simprr φbDy0zCzC
70 59 7 67 68 69 mulgnn0cld φbDy0zCy×˙zC
71 5 psrbagf bDb:I0
72 71 adantl φbDb:I0
73 15 adantr φbDG:IC
74 inidm II=I
75 70 72 73 64 64 74 off φbDb×˙fG:IC
76 ovex b×˙fGV
77 76 a1i φbDb×˙fGV
78 75 ffund φbDFunb×˙fG
79 fvexd φbD0TV
80 5 psrbag IWbDb:I0b-1Fin
81 11 80 syl φbDb:I0b-1Fin
82 81 simplbda φbDb-1Fin
83 72 ffnd φbDbFnI
84 83 adantr φbDyIb-1bFnI
85 15 ffnd φGFnI
86 85 ad2antrr φbDyIb-1GFnI
87 11 ad2antrr φbDyIb-1IW
88 eldifi yIb-1yI
89 88 adantl φbDyIb-1yI
90 fnfvof bFnIGFnIIWyIb×˙fGy=by×˙Gy
91 84 86 87 89 90 syl22anc φbDyIb-1b×˙fGy=by×˙Gy
92 ffvelcdm b:I0yIby0
93 72 88 92 syl2an φbDyIb-1by0
94 elnn0 by0byby=0
95 93 94 sylib φbDyIb-1byby=0
96 eldifn yIb-1¬yb-1
97 96 adantl φbDyIb-1¬yb-1
98 83 ad2antrr φbDyIb-1bybFnI
99 88 ad2antlr φbDyIb-1byyI
100 simpr φbDyIb-1byby
101 98 99 100 elpreimad φbDyIb-1byyb-1
102 97 101 mtand φbDyIb-1¬by
103 95 102 orcnd φbDyIb-1by=0
104 103 oveq1d φbDyIb-1by×˙Gy=0×˙Gy
105 ffvelcdm G:ICyIGyC
106 73 88 105 syl2an φbDyIb-1GyC
107 59 60 7 mulg0 GyC0×˙Gy=0T
108 106 107 syl φbDyIb-10×˙Gy=0T
109 91 104 108 3eqtrd φbDyIb-1b×˙fGy=0T
110 75 109 suppss φbDb×˙fGsupp0Tb-1
111 suppssfifsupp b×˙fGVFunb×˙fG0TVb-1Finb×˙fGsupp0Tb-1finSupp0Tb×˙fG
112 77 78 79 82 110 111 syl32anc φbDfinSupp0Tb×˙fG
113 59 60 63 64 75 112 gsumcl φbDTb×˙fGC
114 3 8 ringcl SRingFifb=AH0˙CTb×˙fGCFifb=AH0˙·˙Tb×˙fGC
115 51 58 113 114 syl3anc φbDFifb=AH0˙·˙Tb×˙fGC
116 115 fmpttd φbDFifb=AH0˙·˙Tb×˙fG:DC
117 eldifsnneq bDA¬b=A
118 117 iffalsed bDAifb=AH0˙=0˙
119 118 adantl φbDAifb=AH0˙=0˙
120 119 fveq2d φbDAFifb=AH0˙=F0˙
121 rhmghm FRRingHomSFRGrpHomS
122 14 121 syl φFRGrpHomS
123 16 43 ghmid FRGrpHomSF0˙=0S
124 122 123 syl φF0˙=0S
125 124 adantr φbDAF0˙=0S
126 120 125 eqtrd φbDAFifb=AH0˙=0S
127 126 oveq1d φbDAFifb=AH0˙·˙Tb×˙fG=0S·˙Tb×˙fG
128 45 adantr φbDASRing
129 eldifi bDAbD
130 129 113 sylan2 φbDATb×˙fGC
131 3 8 43 ringlz SRingTb×˙fGC0S·˙Tb×˙fG=0S
132 128 130 131 syl2anc φbDA0S·˙Tb×˙fG=0S
133 127 132 eqtrd φbDAFifb=AH0˙·˙Tb×˙fG=0S
134 133 50 suppss2 φbDFifb=AH0˙·˙Tb×˙fGsupp0SA
135 3 43 47 50 17 116 134 gsumpt φSbDFifb=AH0˙·˙Tb×˙fG=bDFifb=AH0˙·˙Tb×˙fGA
136 42 135 eqtrd φSbDFxDifx=AH0˙b·˙Tb×˙fG=bDFifb=AH0˙·˙Tb×˙fGA
137 iftrue b=Aifb=AH0˙=H
138 137 fveq2d b=AFifb=AH0˙=FH
139 oveq1 b=Ab×˙fG=A×˙fG
140 139 oveq2d b=ATb×˙fG=TA×˙fG
141 138 140 oveq12d b=AFifb=AH0˙·˙Tb×˙fG=FH·˙TA×˙fG
142 eqid bDFifb=AH0˙·˙Tb×˙fG=bDFifb=AH0˙·˙Tb×˙fG
143 ovex FH·˙TA×˙fGV
144 141 142 143 fvmpt ADbDFifb=AH0˙·˙Tb×˙fGA=FH·˙TA×˙fG
145 17 144 syl φbDFifb=AH0˙·˙Tb×˙fGA=FH·˙TA×˙fG
146 29 136 145 3eqtrd φExDifx=AH0˙=FH·˙TA×˙fG