Metamath Proof Explorer


Theorem freshmansdream

Description: For a prime number P , if X and Y are members of a commutative ring R of characteristic P , then ( ( X + Y ) ^ P ) = ( ( X ^ P ) + ( Y ^ P ) ) . This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023)

Ref Expression
Hypotheses freshmansdream.s B=BaseR
freshmansdream.a +˙=+R
freshmansdream.p ×˙=mulGrpR
freshmansdream.c P=chrR
freshmansdream.r φRCRing
freshmansdream.1 φP
freshmansdream.x φXB
freshmansdream.y φYB
Assertion freshmansdream φP×˙X+˙Y=P×˙X+˙P×˙Y

Proof

Step Hyp Ref Expression
1 freshmansdream.s B=BaseR
2 freshmansdream.a +˙=+R
3 freshmansdream.p ×˙=mulGrpR
4 freshmansdream.c P=chrR
5 freshmansdream.r φRCRing
6 freshmansdream.1 φP
7 freshmansdream.x φXB
8 freshmansdream.y φYB
9 crngring RCRingRRing
10 4 chrcl RRingP0
11 5 9 10 3syl φP0
12 eqid R=R
13 eqid R=R
14 eqid mulGrpR=mulGrpR
15 1 12 13 2 14 3 crngbinom RCRingP0XBYBP×˙X+˙Y=Ri=0P(Pi)RPi×˙XRi×˙Y
16 5 11 7 8 15 syl22anc φP×˙X+˙Y=Ri=0P(Pi)RPi×˙XRi×˙Y
17 11 nn0cnd φP
18 1cnd φ1
19 17 18 npcand φP-1+1=P
20 19 oveq2d φ0P-1+1=0P
21 20 eqcomd φ0P=0P-1+1
22 21 mpteq1d φi0P(Pi)RPi×˙XRi×˙Y=i0P-1+1(Pi)RPi×˙XRi×˙Y
23 22 oveq2d φRi=0P(Pi)RPi×˙XRi×˙Y=Ri=0P-1+1(Pi)RPi×˙XRi×˙Y
24 ringcmn RRingRCMnd
25 5 9 24 3syl φRCMnd
26 prmnn PP
27 nnm1nn0 PP10
28 6 26 27 3syl φP10
29 ringgrp RRingRGrp
30 5 9 29 3syl φRGrp
31 30 adantr φi0P-1+1RGrp
32 11 adantr φi0P-1+1P0
33 fzssz 0P-1+1
34 33 a1i φ0P-1+1
35 34 sselda φi0P-1+1i
36 bccl P0i(Pi)0
37 32 35 36 syl2anc φi0P-1+1(Pi)0
38 37 nn0zd φi0P-1+1(Pi)
39 5 9 syl φRRing
40 39 adantr φi0P-1+1RRing
41 14 1 mgpbas B=BasemulGrpR
42 14 ringmgp RRingmulGrpRMnd
43 39 42 syl φmulGrpRMnd
44 43 adantr φi0P-1+1mulGrpRMnd
45 simpr φi0P-1+1i0P-1+1
46 20 adantr φi0P-1+10P-1+1=0P
47 45 46 eleqtrd φi0P-1+1i0P
48 fznn0sub i0PPi0
49 47 48 syl φi0P-1+1Pi0
50 7 adantr φi0P-1+1XB
51 41 3 44 49 50 mulgnn0cld φi0P-1+1Pi×˙XB
52 elfznn0 i0P-1+1i0
53 52 adantl φi0P-1+1i0
54 8 adantr φi0P-1+1YB
55 41 3 44 53 54 mulgnn0cld φi0P-1+1i×˙YB
56 1 12 ringcl RRingPi×˙XBi×˙YBPi×˙XRi×˙YB
57 40 51 55 56 syl3anc φi0P-1+1Pi×˙XRi×˙YB
58 1 13 mulgcl RGrp(Pi)Pi×˙XRi×˙YB(Pi)RPi×˙XRi×˙YB
59 31 38 57 58 syl3anc φi0P-1+1(Pi)RPi×˙XRi×˙YB
60 1 2 25 28 59 gsummptfzsplit φRi=0P-1+1(Pi)RPi×˙XRi×˙Y=Ri=0P1(Pi)RPi×˙XRi×˙Y+˙RiP-1+1(Pi)RPi×˙XRi×˙Y
61 30 adantr φi0P1RGrp
62 elfzelz i0P1i
63 11 62 36 syl2an φi0P1(Pi)0
64 63 nn0zd φi0P1(Pi)
65 39 adantr φi0P1RRing
66 65 42 syl φi0P1mulGrpRMnd
67 fzssp1 0P10P-1+1
68 67 20 sseqtrid φ0P10P
69 68 sselda φi0P1i0P
70 69 48 syl φi0P1Pi0
71 7 adantr φi0P1XB
72 41 3 66 70 71 mulgnn0cld φi0P1Pi×˙XB
73 elfznn0 i0P1i0
74 73 adantl φi0P1i0
75 8 adantr φi0P1YB
76 41 3 66 74 75 mulgnn0cld φi0P1i×˙YB
77 65 72 76 56 syl3anc φi0P1Pi×˙XRi×˙YB
78 61 64 77 58 syl3anc φi0P1(Pi)RPi×˙XRi×˙YB
79 1 2 25 28 78 gsummptfzsplitl φRi=0P1(Pi)RPi×˙XRi×˙Y=Ri=1P1(Pi)RPi×˙XRi×˙Y+˙Ri0(Pi)RPi×˙XRi×˙Y
80 39 adantr φi1P1RRing
81 prmdvdsbc Pi1P1P(Pi)
82 6 81 sylan φi1P1P(Pi)
83 80 42 syl φi1P1mulGrpRMnd
84 11 nn0zd φP
85 1nn0 10
86 eluzmn P10PP1
87 84 85 86 sylancl φPP1
88 fzss2 PP11P11P
89 87 88 syl φ1P11P
90 89 sselda φi1P1i1P
91 fznn0sub i1PPi0
92 90 91 syl φi1P1Pi0
93 7 adantr φi1P1XB
94 41 3 83 92 93 mulgnn0cld φi1P1Pi×˙XB
95 elfznn i1P1i
96 95 nnnn0d i1P1i0
97 96 adantl φi1P1i0
98 8 adantr φi1P1YB
99 41 3 83 97 98 mulgnn0cld φi1P1i×˙YB
100 80 94 99 56 syl3anc φi1P1Pi×˙XRi×˙YB
101 eqid 0R=0R
102 4 1 13 101 dvdschrmulg RRingP(Pi)Pi×˙XRi×˙YB(Pi)RPi×˙XRi×˙Y=0R
103 80 82 100 102 syl3anc φi1P1(Pi)RPi×˙XRi×˙Y=0R
104 103 mpteq2dva φi1P1(Pi)RPi×˙XRi×˙Y=i1P10R
105 104 oveq2d φRi=1P1(Pi)RPi×˙XRi×˙Y=Ri=1P10R
106 ringmnd RRingRMnd
107 39 106 syl φRMnd
108 ovex 1P1V
109 101 gsumz RMnd1P1VRi=1P10R=0R
110 107 108 109 sylancl φRi=1P10R=0R
111 105 110 eqtrd φRi=1P1(Pi)RPi×˙XRi×˙Y=0R
112 0nn0 00
113 112 a1i φ00
114 41 3 43 11 7 mulgnn0cld φP×˙XB
115 simpr φi=0i=0
116 115 oveq2d φi=0(Pi)=(P0)
117 115 oveq2d φi=0Pi=P0
118 117 oveq1d φi=0Pi×˙X=P0×˙X
119 115 oveq1d φi=0i×˙Y=0×˙Y
120 118 119 oveq12d φi=0Pi×˙XRi×˙Y=P0×˙XR0×˙Y
121 116 120 oveq12d φi=0(Pi)RPi×˙XRi×˙Y=(P0)RP0×˙XR0×˙Y
122 bcn0 P0(P0)=1
123 11 122 syl φ(P0)=1
124 17 subid1d φP0=P
125 124 oveq1d φP0×˙X=P×˙X
126 eqid 1R=1R
127 14 126 ringidval 1R=0mulGrpR
128 41 127 3 mulg0 YB0×˙Y=1R
129 8 128 syl φ0×˙Y=1R
130 125 129 oveq12d φP0×˙XR0×˙Y=P×˙XR1R
131 1 12 126 ringridm RRingP×˙XBP×˙XR1R=P×˙X
132 39 114 131 syl2anc φP×˙XR1R=P×˙X
133 130 132 eqtrd φP0×˙XR0×˙Y=P×˙X
134 123 133 oveq12d φ(P0)RP0×˙XR0×˙Y=1RP×˙X
135 1 13 mulg1 P×˙XB1RP×˙X=P×˙X
136 114 135 syl φ1RP×˙X=P×˙X
137 134 136 eqtrd φ(P0)RP0×˙XR0×˙Y=P×˙X
138 137 adantr φi=0(P0)RP0×˙XR0×˙Y=P×˙X
139 121 138 eqtrd φi=0(Pi)RPi×˙XRi×˙Y=P×˙X
140 1 107 113 114 139 gsumsnd φRi0(Pi)RPi×˙XRi×˙Y=P×˙X
141 111 140 oveq12d φRi=1P1(Pi)RPi×˙XRi×˙Y+˙Ri0(Pi)RPi×˙XRi×˙Y=0R+˙P×˙X
142 1 2 101 grplid RGrpP×˙XB0R+˙P×˙X=P×˙X
143 30 114 142 syl2anc φ0R+˙P×˙X=P×˙X
144 79 141 143 3eqtrd φRi=0P1(Pi)RPi×˙XRi×˙Y=P×˙X
145 19 11 eqeltrd φP-1+10
146 41 3 43 11 8 mulgnn0cld φP×˙YB
147 simpr φi=P-1+1i=P-1+1
148 19 adantr φi=P-1+1P-1+1=P
149 147 148 eqtrd φi=P-1+1i=P
150 149 oveq2d φi=P-1+1(Pi)=(PP)
151 149 oveq2d φi=P-1+1Pi=PP
152 151 oveq1d φi=P-1+1Pi×˙X=PP×˙X
153 149 oveq1d φi=P-1+1i×˙Y=P×˙Y
154 152 153 oveq12d φi=P-1+1Pi×˙XRi×˙Y=PP×˙XRP×˙Y
155 150 154 oveq12d φi=P-1+1(Pi)RPi×˙XRi×˙Y=(PP)RPP×˙XRP×˙Y
156 bcnn P0(PP)=1
157 11 156 syl φ(PP)=1
158 17 subidd φPP=0
159 158 oveq1d φPP×˙X=0×˙X
160 41 127 3 mulg0 XB0×˙X=1R
161 7 160 syl φ0×˙X=1R
162 159 161 eqtrd φPP×˙X=1R
163 162 oveq1d φPP×˙XRP×˙Y=1RRP×˙Y
164 1 12 126 ringlidm RRingP×˙YB1RRP×˙Y=P×˙Y
165 39 146 164 syl2anc φ1RRP×˙Y=P×˙Y
166 163 165 eqtrd φPP×˙XRP×˙Y=P×˙Y
167 157 166 oveq12d φ(PP)RPP×˙XRP×˙Y=1RP×˙Y
168 1 13 mulg1 P×˙YB1RP×˙Y=P×˙Y
169 146 168 syl φ1RP×˙Y=P×˙Y
170 167 169 eqtrd φ(PP)RPP×˙XRP×˙Y=P×˙Y
171 170 adantr φi=P-1+1(PP)RPP×˙XRP×˙Y=P×˙Y
172 155 171 eqtrd φi=P-1+1(Pi)RPi×˙XRi×˙Y=P×˙Y
173 1 107 145 146 172 gsumsnd φRiP-1+1(Pi)RPi×˙XRi×˙Y=P×˙Y
174 144 173 oveq12d φRi=0P1(Pi)RPi×˙XRi×˙Y+˙RiP-1+1(Pi)RPi×˙XRi×˙Y=P×˙X+˙P×˙Y
175 60 174 eqtrd φRi=0P-1+1(Pi)RPi×˙XRi×˙Y=P×˙X+˙P×˙Y
176 16 23 175 3eqtrd φP×˙X+˙Y=P×˙X+˙P×˙Y