| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1ff |
|
| 2 |
1
|
ffvelcdmda |
|
| 3 |
|
i1ff |
|
| 4 |
3
|
ffvelcdmda |
|
| 5 |
|
absreim |
|
| 6 |
2 4 5
|
syl2an |
|
| 7 |
6
|
anandirs |
|
| 8 |
2
|
recnd |
|
| 9 |
8
|
sqvald |
|
| 10 |
4
|
recnd |
|
| 11 |
10
|
sqvald |
|
| 12 |
9 11
|
oveqan12d |
|
| 13 |
12
|
anandirs |
|
| 14 |
13
|
fveq2d |
|
| 15 |
7 14
|
eqtrd |
|
| 16 |
15
|
mpteq2dva |
|
| 17 |
|
ax-icn |
|
| 18 |
|
mulcl |
|
| 19 |
17 10 18
|
sylancr |
|
| 20 |
|
addcl |
|
| 21 |
8 19 20
|
syl2an |
|
| 22 |
21
|
anandirs |
|
| 23 |
|
reex |
|
| 24 |
23
|
a1i |
|
| 25 |
2
|
adantlr |
|
| 26 |
|
ovexd |
|
| 27 |
1
|
feqmptd |
|
| 28 |
27
|
adantr |
|
| 29 |
23
|
a1i |
|
| 30 |
17
|
a1i |
|
| 31 |
|
fconstmpt |
|
| 32 |
31
|
a1i |
|
| 33 |
3
|
feqmptd |
|
| 34 |
29 30 4 32 33
|
offval2 |
|
| 35 |
34
|
adantl |
|
| 36 |
24 25 26 28 35
|
offval2 |
|
| 37 |
|
absf |
|
| 38 |
37
|
a1i |
|
| 39 |
38
|
feqmptd |
|
| 40 |
|
fveq2 |
|
| 41 |
22 36 39 40
|
fmptco |
|
| 42 |
8 8
|
mulcld |
|
| 43 |
10 10
|
mulcld |
|
| 44 |
|
addcl |
|
| 45 |
42 43 44
|
syl2an |
|
| 46 |
45
|
anandirs |
|
| 47 |
42
|
adantlr |
|
| 48 |
43
|
adantll |
|
| 49 |
23
|
a1i |
|
| 50 |
49 2 2 27 27
|
offval2 |
|
| 51 |
50
|
adantr |
|
| 52 |
29 4 4 33 33
|
offval2 |
|
| 53 |
52
|
adantl |
|
| 54 |
24 47 48 51 53
|
offval2 |
|
| 55 |
|
sqrtf |
|
| 56 |
55
|
a1i |
|
| 57 |
56
|
feqmptd |
|
| 58 |
|
fveq2 |
|
| 59 |
46 54 57 58
|
fmptco |
|
| 60 |
16 41 59
|
3eqtr4d |
|
| 61 |
|
elrege0 |
|
| 62 |
|
resqrtcl |
|
| 63 |
61 62
|
sylbi |
|
| 64 |
63
|
adantl |
|
| 65 |
|
id |
|
| 66 |
65
|
feqmptd |
|
| 67 |
55 66
|
ax-mp |
|
| 68 |
67
|
reseq1i |
|
| 69 |
|
rge0ssre |
|
| 70 |
|
ax-resscn |
|
| 71 |
69 70
|
sstri |
|
| 72 |
|
resmpt |
|
| 73 |
71 72
|
ax-mp |
|
| 74 |
68 73
|
eqtri |
|
| 75 |
64 74
|
fmptd |
|
| 76 |
|
ge0addcl |
|
| 77 |
76
|
adantl |
|
| 78 |
|
oveq12 |
|
| 79 |
78
|
anidms |
|
| 80 |
79
|
feq1d |
|
| 81 |
|
i1ff |
|
| 82 |
81
|
ffvelcdmda |
|
| 83 |
82 82
|
remulcld |
|
| 84 |
82
|
msqge0d |
|
| 85 |
|
elrege0 |
|
| 86 |
83 84 85
|
sylanbrc |
|
| 87 |
86
|
fmpttd |
|
| 88 |
23
|
a1i |
|
| 89 |
81
|
feqmptd |
|
| 90 |
88 82 82 89 89
|
offval2 |
|
| 91 |
90
|
feq1d |
|
| 92 |
87 91
|
mpbird |
|
| 93 |
80 92
|
vtoclga |
|
| 94 |
93
|
adantr |
|
| 95 |
|
oveq12 |
|
| 96 |
95
|
anidms |
|
| 97 |
96
|
feq1d |
|
| 98 |
97 92
|
vtoclga |
|
| 99 |
98
|
adantl |
|
| 100 |
|
inidm |
|
| 101 |
77 94 99 24 24 100
|
off |
|
| 102 |
|
fco2 |
|
| 103 |
75 101 102
|
syl2anc |
|
| 104 |
|
rnco |
|
| 105 |
|
ffn |
|
| 106 |
55 105
|
ax-mp |
|
| 107 |
|
readdcl |
|
| 108 |
107
|
adantl |
|
| 109 |
|
remulcl |
|
| 110 |
109
|
adantl |
|
| 111 |
110 1 1 49 49 100
|
off |
|
| 112 |
111
|
adantr |
|
| 113 |
109
|
adantl |
|
| 114 |
113 3 3 29 29 100
|
off |
|
| 115 |
114
|
adantl |
|
| 116 |
108 112 115 24 24 100
|
off |
|
| 117 |
116
|
frnd |
|
| 118 |
117 70
|
sstrdi |
|
| 119 |
|
fnssres |
|
| 120 |
106 118 119
|
sylancr |
|
| 121 |
|
id |
|
| 122 |
121 121
|
i1fmul |
|
| 123 |
122
|
adantr |
|
| 124 |
|
id |
|
| 125 |
124 124
|
i1fmul |
|
| 126 |
125
|
adantl |
|
| 127 |
123 126
|
i1fadd |
|
| 128 |
|
i1frn |
|
| 129 |
127 128
|
syl |
|
| 130 |
|
fnfi |
|
| 131 |
120 129 130
|
syl2anc |
|
| 132 |
|
rnfi |
|
| 133 |
131 132
|
syl |
|
| 134 |
104 133
|
eqeltrid |
|
| 135 |
|
cnvco |
|
| 136 |
135
|
imaeq1i |
|
| 137 |
|
imaco |
|
| 138 |
136 137
|
eqtri |
|
| 139 |
|
i1fima |
|
| 140 |
127 139
|
syl |
|
| 141 |
138 140
|
eqeltrid |
|
| 142 |
141
|
adantr |
|
| 143 |
138
|
fveq2i |
|
| 144 |
|
eldifsni |
|
| 145 |
|
c0ex |
|
| 146 |
145
|
elsn |
|
| 147 |
|
eqcom |
|
| 148 |
146 147
|
bitri |
|
| 149 |
148
|
necon3bbii |
|
| 150 |
|
sqrt0 |
|
| 151 |
150
|
eleq1i |
|
| 152 |
149 151
|
xchnxbir |
|
| 153 |
144 152
|
sylibr |
|
| 154 |
153
|
olcd |
|
| 155 |
|
ianor |
|
| 156 |
|
elpreima |
|
| 157 |
55 105 156
|
mp2b |
|
| 158 |
155 157
|
xchnxbir |
|
| 159 |
154 158
|
sylibr |
|
| 160 |
|
i1fima2 |
|
| 161 |
127 159 160
|
syl2an |
|
| 162 |
143 161
|
eqeltrid |
|
| 163 |
103 134 142 162
|
i1fd |
|
| 164 |
60 163
|
eqeltrd |
|